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Lorentz transformations. The ele
tromagneti
 wave equation (1=


2

)�

2

f=�t

2

� �f = 0 in

va
uum must preserve its form on 
hanging the uniformly-moving referen
e frames (this is 
alled

the relativity prin
iple). This amounts to keep invariant the interval 


2

t

2

� x

2

for a frame moving

with 
onstant velo
ity v along the x-axis. Su
h an invarian
e is realized by a rotation of imaginary

angle, whi
h leads to the Lorentz transformations
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here x

0

and t

0

are the 
oordinate and, respe
tively, the time in the frame K

0

whi
h moves with

the 
onstant velo
ity v (i.e. re
tilinearly and uniformly) along the x-axis, with respe
t to the rest

frame K, where we measure the 
oordinate x and the time t (Fig. 1).

We 
an see that the velo
ity of light 
 is a universal 
onstant (with respe
t to uniformly-moving

frames, whi
h we 
all inertial); we 
an also see that it is the maximum velo
ity. For v � 
 the

Lorentz transformations be
ome the Galileo transformations, x

0

= x� vt, t

0

= t. Sometimes, it is


onvenient to use the notations � = v=
 nd 
 = (1��

2

)

�1=2

. It is worth noting that the transverse


oordinates y and z do not 
hange.

Spa
e 
ontra
tion and time dilatation. We get from equations (1)
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�x
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is the length at rest; it folows that a moving length �x gets shorter. This is the spa
e


ontra
tion. The time t

0

at the origin x

0

= 0 (x = vt) is
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t ; (3)

t

0

is the time in the moving frame: it is shorter than in the rest frame. This is the time dilatation.

t

0

is also 
alled the proper time.

Addition of velo
ities. We take the di�erentials of the equations (1) and get immediately
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We 
an see that the law of 
omposition of the velo
ities is not 
ommutative, any two velo
ities

less than 
 
ombine to a velo
ity less than 
, two parallel velo
ities 
 give one velo
ity 
, et
.

Aberration of light. Let us assume that we have a sour
e of light in the frame K, i.e. we

assume
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we introdu
e the angles � and �

0

through v
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. We have
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as expe
ted. In addition,
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This is the aberration of light. Equations (9) and (10) give the deviation of a ray of light on

passing from one frame to another. The phenomenon is shown in Figs. 2 and 3. On moving near

the sour
e 
os� < 0 and 
os�

0

< 0 and 
os�

0

< 
os�, a

ording to equation (9). In this region

the observer in the frame K

0

sees the sour
e deviated to the forward dire
tion. This is 
alled the

"forward beaming". On moving away from the sour
e 
os� > 0, but 
os�

0


an be positive or

negative; for 
os� > � the ray of light is deviated ba
kward, as shown in Fig. 3. For 
os� < �

there is a shadow 
one where the ligh does not rea
h the observer any longer. This 
an be seen

easily for � = ��=2.

We 
an see that on moving near the sour
e we see an enhan
ed luminosity, as a result of the

de
rease of the solid angle inthe moving frame. Indeed, the solid angles are given by
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For a longitudinal beaming 
os� = �1, we get d


0

=d
 = (1� �)=(1 + �), whi
h, in the (ultra-)

relativisti
 limit, be
omes d


0

=d
 ' 1=4


2

.

Doppler e�e
t. The phase !t� kr must be invariant on 
hanging the frame; we have
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making use of the Lorentz transformations (1) we get
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and equations (9) and (10) of the aberration of light. Equation (12) is the Doppler e�e
t: the

frequen
y de
reases on moving away from the sour
e and in
reases on 
oming near the sour
e. In

addition, there is a transverse Doppler e�e
t for 
os� = 0.

Fresnel drag. Let light be propagated in a medium, whi
h moves with velo
ity v in the same

dire
tion as light. The velo
ity of light in the medium is 
=n, where n is the refra
tion index of

the medium (Fig. 4). We are interested in the velo
ity v

x

= V of light in the laboratory frame.

Equation (4) gives

V =


=n+ v

1 + v=
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The refra
tion index 
orresponds to the wavelength in the moving medium; from equation (12)

we have
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we have
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introdu
ing this 
orre
tion in equation (13) we get
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a moving medium drags the light along.

Spots, beaming and fo
using. Let S be a sour
e of light in motion, as shown in Fig. 5.

For short distan
es it emits a parallel (paraxial) beam, whi
h does not exhibit aberration. For

longer distan
es, the dispersion gives a spot �S

0

, whi
h should be 
ompared with the spot �S,


orresponding to the sour
e at rest. From equation (10) we have
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for small values of � and �

0

(the sign of the velo
ity is reversed in 
omparison with equations (9)

and (10)). The ratio of the two spots is given by
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the light beams in the forward dire
tion; in the (ultra-) relativisti
 limit �S

0

=�S ' 1=2


2

.

Therefore, the �ux of a laser light (energy per 
ross-se
tional area) in
reases by a fa
tor 2


2

, as

a result of the light beaming. At the same time, the pulse duration of the laser de
reases by a

fa
tor 
, so the laser intensity (�ow of energy, i.e. energy per unit 
ross-se
tional area and per

unit time) in
reases by a fa
tor 2


3

.

A pulsed, fo
used laser beam 
an be viewed as a su

ession of "sli
es" of light �ying through the

gometri
al-opti
s frame of fo
alized light, the thi
kness of the sli
es being di
tated by the pulse
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duration (Fig. 6). Visualized on a s
reen moving toward the fo
us F , the spot appears of shorter

transverse dimensions, due to the aberration of light. A

ording to the laws of the geometri
al

opti
s, we dedu
e that the transverse dimensions of the fo
us F are shorter, in keeping with the

paradigm that we 
annot fo
alize light over distan
es shorter than the wavelength (the wavelength

gets shorter on moving near the fo
us). Similarly, on moving away from the fo
us, the wavelength

gets longer and the spot gets wider, in a

ordan
e with a wider fo
us; again, we 
annot fo
alize

light on distan
es shorter than the wavelength.
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Fig. 4 Fresnel drag Fig. 5 Collimation - forward beaming
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Fig. 6 Fo
using - forward beaming
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