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Lorentz transformations. The eletromagneti wave equation (1=
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vauum must preserve its form on hanging the uniformly-moving referene frames (this is alled

the relativity priniple). This amounts to keep invariant the interval 
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for a frame moving

with onstant veloity v along the x-axis. Suh an invariane is realized by a rotation of imaginary

angle, whih leads to the Lorentz transformations
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here x

0

and t

0

are the oordinate and, respetively, the time in the frame K

0

whih moves with

the onstant veloity v (i.e. retilinearly and uniformly) along the x-axis, with respet to the rest

frame K, where we measure the oordinate x and the time t (Fig. 1).

We an see that the veloity of light  is a universal onstant (with respet to uniformly-moving

frames, whih we all inertial); we an also see that it is the maximum veloity. For v �  the

Lorentz transformations beome the Galileo transformations, x

0

= x� vt, t

0

= t. Sometimes, it is

onvenient to use the notations � = v= nd  = (1��

2

)

�1=2

. It is worth noting that the transverse

oordinates y and z do not hange.

Spae ontration and time dilatation. We get from equations (1)
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is the length at rest; it folows that a moving length �x gets shorter. This is the spae

ontration. The time t
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at the origin x
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= 0 (x = vt) is
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t

0

is the time in the moving frame: it is shorter than in the rest frame. This is the time dilatation.

t

0

is also alled the proper time.

Addition of veloities. We take the di�erentials of the equations (1) and get immediately
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We an see that the law of omposition of the veloities is not ommutative, any two veloities

less than  ombine to a veloity less than , two parallel veloities  give one veloity , et.

Aberration of light. Let us assume that we have a soure of light in the frame K, i.e. we

assume
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we introdue the angles � and �
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as expeted. In addition,
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This is the aberration of light. Equations (9) and (10) give the deviation of a ray of light on

passing from one frame to another. The phenomenon is shown in Figs. 2 and 3. On moving near

the soure os� < 0 and os�

0

< 0 and os�

0

< os�, aording to equation (9). In this region

the observer in the frame K

0

sees the soure deviated to the forward diretion. This is alled the

"forward beaming". On moving away from the soure os� > 0, but os�

0

an be positive or

negative; for os� > � the ray of light is deviated bakward, as shown in Fig. 3. For os� < �

there is a shadow one where the ligh does not reah the observer any longer. This an be seen

easily for � = ��=2.

We an see that on moving near the soure we see an enhaned luminosity, as a result of the

derease of the solid angle inthe moving frame. Indeed, the solid angles are given by
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For a longitudinal beaming os� = �1, we get d
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=d
 = (1� �)=(1 + �), whih, in the (ultra-)

relativisti limit, beomes d
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Doppler e�et. The phase !t� kr must be invariant on hanging the frame; we have
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making use of the Lorentz transformations (1) we get
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and equations (9) and (10) of the aberration of light. Equation (12) is the Doppler e�et: the

frequeny dereases on moving away from the soure and inreases on oming near the soure. In

addition, there is a transverse Doppler e�et for os� = 0.

Fresnel drag. Let light be propagated in a medium, whih moves with veloity v in the same

diretion as light. The veloity of light in the medium is =n, where n is the refration index of

the medium (Fig. 4). We are interested in the veloity v

x

= V of light in the laboratory frame.

Equation (4) gives
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The refration index orresponds to the wavelength in the moving medium; from equation (12)

we have
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introduing this orretion in equation (13) we get

V '



n

+ v

 

1� 1=n

2

�

�

n

dn

d�

!

; (17)

a moving medium drags the light along.

Spots, beaming and fousing. Let S be a soure of light in motion, as shown in Fig. 5.

For short distanes it emits a parallel (paraxial) beam, whih does not exhibit aberration. For

longer distanes, the dispersion gives a spot �S

0

, whih should be ompared with the spot �S,

orresponding to the soure at rest. From equation (10) we have
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for small values of � and �

0

(the sign of the veloity is reversed in omparison with equations (9)

and (10)). The ratio of the two spots is given by
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the light beams in the forward diretion; in the (ultra-) relativisti limit �S

0

=�S ' 1=2

2

.

Therefore, the �ux of a laser light (energy per ross-setional area) inreases by a fator 2

2

, as

a result of the light beaming. At the same time, the pulse duration of the laser dereases by a

fator , so the laser intensity (�ow of energy, i.e. energy per unit ross-setional area and per

unit time) inreases by a fator 2

3

.

A pulsed, foused laser beam an be viewed as a suession of "slies" of light �ying through the

gometrial-optis frame of foalized light, the thikness of the slies being ditated by the pulse
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duration (Fig. 6). Visualized on a sreen moving toward the fous F , the spot appears of shorter

transverse dimensions, due to the aberration of light. Aording to the laws of the geometrial

optis, we dedue that the transverse dimensions of the fous F are shorter, in keeping with the

paradigm that we annot foalize light over distanes shorter than the wavelength (the wavelength

gets shorter on moving near the fous). Similarly, on moving away from the fous, the wavelength

gets longer and the spot gets wider, in aordane with a wider fous; again, we annot foalize

light on distanes shorter than the wavelength.
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