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The shift. We consider a homogeneous piezoelectric plate with thickness d and density p, with one
fixed surface and another surface free. The wave equation which governs the waves propagating
along the plate thickness is , ,
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where u is the displacement field, K is the elastic constant and v = (/K /p is the wave velocity. In
typical solids the elastic wave velocity is v ~ 2000m/s; for 1M H z a frequency we get a wavelength
A ~ 2mm. The general solution of equation (1) can be represented as u = Ae~itikz  Be-iwi=ikz
where w? = v?k? and A = B*, or u = ugcoswt cos(kx + ). Leaving aside the temporal factor
equation (1) becomes

=0, (1)
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imposing the boundary conditions u(z = 0) = 0 (fixed end) and du/dz|,_, = 0 (free end), we get

Up = ugsinkyz , knd=(n+1/2)7, n=0, £1, £2, ... . (3)

We assume now that a thin film of density dp and thickness h < d is deposited at the free surface;
this amounts to a change p — p + dphd(z — d) in the density; equation (2) becomes
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ax2+[K+Kh5(x d)jw’u =0 ; (4)
the boundary condition at the free end is obtained now by integrating once equation (4); it reads
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since u and its derivatives are vanishing for x > d, we get
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e — —hw®u(x=d) =0 (6)
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(which is a generalized Dirichlet-von Neumann boundary condition).

For z < d, the wave equation is not modified, so we have the solution u = ug sin kz (and w? = v?k?).
The boundary condition (6) gives
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Figure 1: cotkd vs kd. The crossed points indicate the frequency without added mass, the
encircled points correpond to the frequency shift.

This equation has a graphical solution, as shown in Fig. 1. We can see that the original frequencies
wp = vkp, knd = (n+ 1/2)7 (equation (3), crossed points in Fig. 1) are shifted to the encircled
points in Fig. 1. For (dp/p)(h/d) > 0 the frequency shift is negative, for (6p/p)(h/d) < 0 the
frequency shift is positive. For |(dp/p)(h/d)| < 1 we can solve the equation (7) by means of the
perturbation theory; indeed, we set

kd = knd + 0, (8)

and get
tanénzén:—%g(nle/Z)ﬂ 9)
(for a limited range of n). For the fundamental mode n = 0 we get &y = —mhdp/2pd and

dwo/wo = —hdp/pd; in general, dw, /w, = —hdp/pd (as long as |[dw, /w,| < 1).

We can increase the sensitivity by increasing, within reasonable limits, the parameter |hdp/pd]|.
In general, inhomogeneities in the plate or the deposited film produce noise, especially for their
mean separation distance of the order of the wavelength. Another important cause of noise is
the limited extension of the sensor along the transverse directions and its interfaces (contacts).
All these mechanisms of wave damping are active for waves parallel with the sensor surfaces. In
particular, the excitation of the surface waves (Rayleigh waves) can increase the damping, because
these waves are have short wavelengths, which may be comparable with the mean separation length
of the inhomogeneities dispersed in the surface film.

Damping. Let us consider a plane wave u = uge % with usual notations and w = ck; leaving

aside the temporal factor it satisfies the Helmholtz equation
Au+ku=0. (10)
On a scatterer localized at ry the wave is
Su = ugud(r — ro)e™ (11)

where v is the scatterer’s volume. This localized wave is a source for the scattered waves. Inded,
it acts with a "force"

(A +%)du (12)
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upon the medium, where & = w/¢ takes into account the nature of the scatterer through the
modified velocity €. The wave equation for the scattered waves is

Aty + Ky = (A +F)0u = (A + & )ugud (r — ro)e’™ ™ . (13)
The solution of this equation is given by
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where the spherical wave e*I"=*'| / |r — r'| is the Green function of the Helmholtz equation (in three
dimensions). The A’-term can be integrated by parts, leading to the localized wave as expected.
We are left with the scattered wave

7.2 ik|r—ro|
UgVk ™ jp, € 0
Ug = e . 15
° A7 v — 1ol (15)
For an assembly of scatteres located at r; we get
7.2 ik|r—r;|
uovk ke, €T
Us = et ——— 16
=T e (16)
or — .
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where n is the density of scatterers.

Let us assume that the original wave propagates along the xz-direction, and let us set r; = (z, R;);
we are interested in the wave scattered by a slice of thickness AX, between X and X + AX; we
get

Aug = UOTLUEZ /dRi dze’*® VRO , (18)
A AX \/(R ~R;)?+ (X — 1)
which can be approximated by
uonvk ekl ugnvk. X ok
Auy = 22 AX/dR e = T AX N = T u(X)AX (19)
Up to a phase factor (i), this is the loss of the incident wave, i.e.
Au = —n;ZQ ulAzx | (20)
which shows that the wave acquires a damping factor u — u~*", where
1
o= invk (21)

(for the present purpose we may take k = k).

A similar estimation can be done in two dimensions, where it is convenient to represent the Green
function G(r) of the Helmholtz equation

AG + k*G = 6(r) (22)
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as iqr
6) = o [ s (23)
(Hankel function). The calculations are similar with those given above and the result is
1
a = §nssk , (24)

where n; is the superficial density of the scatterers and s is their area.

From equations (21) and (24) we can see that the damping can be reduced by reducing the effective

volume (area) nv (nss) of the scattering centres, and by using waves with long wavelengths, as
expected.
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