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The shift. We onsider a homogeneous piezoeletri plate with thikness d and density �, with one

�xed surfae and another surfae free. The wave equation whih governs the waves propagating

along the plate thikness is
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where u is the displaement �eld, K is the elasti onstant and v =

q

K=� is the wave veloity. In

typial solids the elasti wave veloity is v ' 2000m=s; for 1MHz a frequeny we get a wavelength

� ' 2mm. The general solution of equation (1) an be represented as u = Ae
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, or u = u

0

os!t os(kx + '). Leaving aside the temporal fator

equation (1) beomes
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imposing the boundary onditions u(x = 0) = 0 (�xed end) and du=dxj

x=d

= 0 (free end), we get
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sin k

n

x ; k

n

d = (n+ 1=2)� ; n = 0; �1; �2; ::: : (3)

We assume now that a thin �lm of density Æ� and thikness h� d is deposited at the free surfae;

this amounts to a hange �! �+ Æ�hÆ(x� d) in the density; equation (2) beomes
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the boundary ondition at the free end is obtained now by integrating one equation (4); it reads
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u(x = d) = 0 ; (5)

sine u and its derivatives are vanishing for x > d, we get
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u(x = d) = 0 (6)

(whih is a generalized Dirihlet-von Neumann boundary ondition).

For x < d, the wave equation is not modi�ed, so we have the solution u = u

0

sin kx (and !

2

= v
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k

2

).

The boundary ondition (6) gives

ot kd =
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d

� kd : (7)
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Figure 1: ot kd vs kd. The rossed points indiate the frequeny without added mass, the

enirled points orrepond to the frequeny shift.

This equation has a graphial solution, as shown in Fig. 1. We an see that the original frequenies

!

n

= vk

n

, k

n

d = (n + 1=2)� (equation (3), rossed points in Fig. 1) are shifted to the enirled

points in Fig. 1. For (Æ�=�)(h=d) > 0 the frequeny shift is negative, for (Æ�=�)(h=d) < 0 the

frequeny shift is positive. For j(Æ�=�)(h=d)j � 1 we an solve the equation (7) by means of the

perturbation theory; indeed, we set

kd = k
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d+ Æ

n
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and get
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(for a limited range of n). For the fundamental mode n = 0 we get Æ

0

= ��hÆ�=2�d and
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0
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= �hÆ�=�d; in general, Æ!

n

=!
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= �hÆ�=�d (as long as jÆ!

n
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n

j � 1).

We an inrease the sensitivity by inreasing, within reasonable limits, the parameter jhÆ�=�dj.

In general, inhomogeneities in the plate or the deposited �lm produe noise, espeially for their

mean separation distane of the order of the wavelength. Another important ause of noise is

the limited extension of the sensor along the transverse diretions and its interfaes (ontats).

All these mehanisms of wave damping are ative for waves parallel with the sensor surfaes. In

partiular, the exitation of the surfae waves (Rayleigh waves) an inrease the damping, beause

these waves are have short wavelengths, whih may be omparable with the mean separation length

of the inhomogeneities dispersed in the surfae �lm.

Damping. Let us onsider a plane wave u = u

0

e

�i!t+ikr

with usual notations and ! = k; leaving

aside the temporal fator it satis�es the Helmholtz equation
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On a satterer loalized at r

0

the wave is
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where v is the satterer's volume. This loalized wave is a soure for the sattered waves. Inded,

it ats with a "fore"
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upon the medium, where k = != takes into aount the nature of the satterer through the

modi�ed veloity . The wave equation for the sattered waves is
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The solution of this equation is given by
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where the spherial wave e

ikjr�r

0

j

= jr� r

0

j is the Green funtion of the Helmholtz equation (in three

dimensions). The �

0

-term an be integrated by parts, leading to the loalized wave as expeted.

We are left with the sattered wave

u

s

=

u

0

vk

2

4�

e

ikr

0

e

ikjr�r

0

j

jr� r

0

j

: (15)

For an assembly of satteres loated at r

i

we get
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where n is the density of satterers.

Let us assume that the original wave propagates along the x-diretion, and let us set r

i

= (x;R

i

);

we are interested in the wave sattered by a slie of thikness �X, between X and X +�X; we

get
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whih an be approximated by
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Up to a phase fator (i), this is the loss of the inident wave, i.e.

�u = �

nvk

2

2k

u�x ; (20)

whih shows that the wave aquires a damping fator u! u

��x

, where

� =

1

2

nvk (21)

(for the present purpose we may take k = k).

A similar estimation an be done in two dimensions, where it is onvenient to represent the Green

funtion G(r) of the Helmholtz equation
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as

G(r) =
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(Hankel funtion). The alulations are similar with those given above and the result is

� =

1

2

n

s

sk ; (24)

where n

s

is the super�ial density of the satterers and s is their area.

From equations (21) and (24) we an see that the damping an be redued by reduing the e�etive

volume (area) nv (n

s

s) of the sattering entres, and by using waves with long wavelengths, as

expeted.
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