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The shift. We 
onsider a homogeneous piezoele
tri
 plate with thi
kness d and density �, with one

�xed surfa
e and another surfa
e free. The wave equation whi
h governs the waves propagating

along the plate thi
kness is
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where u is the displa
ement �eld, K is the elasti
 
onstant and v =

q

K=� is the wave velo
ity. In

typi
al solids the elasti
 wave velo
ity is v ' 2000m=s; for 1MHz a frequen
y we get a wavelength

� ' 2mm. The general solution of equation (1) 
an be represented as u = Ae

�i!t+ikx

+Be

�i!t�ikx

,

where !
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and A = B

�

, or u = u

0


os!t 
os(kx + '). Leaving aside the temporal fa
tor

equation (1) be
omes

�

2

u

�x

2

+

�

K

!

2

u = 0 ; (2)

imposing the boundary 
onditions u(x = 0) = 0 (�xed end) and du=dxj

x=d

= 0 (free end), we get

u

n

= u

0

sin k

n

x ; k

n

d = (n+ 1=2)� ; n = 0; �1; �2; ::: : (3)

We assume now that a thin �lm of density Æ� and thi
kness h� d is deposited at the free surfa
e;

this amounts to a 
hange �! �+ Æ�hÆ(x� d) in the density; equation (2) be
omes
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u = 0 ; (4)

the boundary 
ondition at the free end is obtained now by integrating on
e equation (4); it reads
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u(x = d) = 0 ; (5)

sin
e u and its derivatives are vanishing for x > d, we get
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u(x = d) = 0 (6)

(whi
h is a generalized Diri
hlet-von Neumann boundary 
ondition).

For x < d, the wave equation is not modi�ed, so we have the solution u = u

0

sin kx (and !

2

= v

2

k

2

).

The boundary 
ondition (6) gives


ot kd =

Æ�

�

h

d

� kd : (7)
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Figure 1: 
ot kd vs kd. The 
rossed points indi
ate the frequen
y without added mass, the

en
ir
led points 
orrepond to the frequen
y shift.

This equation has a graphi
al solution, as shown in Fig. 1. We 
an see that the original frequen
ies

!

n

= vk

n

, k

n

d = (n + 1=2)� (equation (3), 
rossed points in Fig. 1) are shifted to the en
ir
led

points in Fig. 1. For (Æ�=�)(h=d) > 0 the frequen
y shift is negative, for (Æ�=�)(h=d) < 0 the

frequen
y shift is positive. For j(Æ�=�)(h=d)j � 1 we 
an solve the equation (7) by means of the

perturbation theory; indeed, we set

kd = k

n

d+ Æ

n

(8)

and get

tan Æ

n

' Æ
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(for a limited range of n). For the fundamental mode n = 0 we get Æ

0

= ��hÆ�=2�d and

Æ!

0

=!

0

= �hÆ�=�d; in general, Æ!

n

=!

n

= �hÆ�=�d (as long as jÆ!

n

=!

n

j � 1).

We 
an in
rease the sensitivity by in
reasing, within reasonable limits, the parameter jhÆ�=�dj.

In general, inhomogeneities in the plate or the deposited �lm produ
e noise, espe
ially for their

mean separation distan
e of the order of the wavelength. Another important 
ause of noise is

the limited extension of the sensor along the transverse dire
tions and its interfa
es (
onta
ts).

All these me
hanisms of wave damping are a
tive for waves parallel with the sensor surfa
es. In

parti
ular, the ex
itation of the surfa
e waves (Rayleigh waves) 
an in
rease the damping, be
ause

these waves are have short wavelengths, whi
h may be 
omparable with the mean separation length

of the inhomogeneities dispersed in the surfa
e �lm.

Damping. Let us 
onsider a plane wave u = u

0

e

�i!t+ikr

with usual notations and ! = 
k; leaving

aside the temporal fa
tor it satis�es the Helmholtz equation

�u+ k

2

u = 0 : (10)

On a s
atterer lo
alized at r

0

the wave is

Æu = u

0

vÆ(r� r

0

)e

ikr

0

; (11)

where v is the s
atterer's volume. This lo
alized wave is a sour
e for the s
attered waves. Inded,

it a
ts with a "for
e"

(� + k

2

)Æu (12)
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upon the medium, where k = !=
 takes into a

ount the nature of the s
atterer through the

modi�ed velo
ity 
. The wave equation for the s
attered waves is
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The solution of this equation is given by
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where the spheri
al wave e

ikjr�r

0

j

= jr� r

0

j is the Green fun
tion of the Helmholtz equation (in three

dimensions). The �

0

-term 
an be integrated by parts, leading to the lo
alized wave as expe
ted.

We are left with the s
attered wave
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For an assembly of s
atteres lo
ated at r

i

we get
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where n is the density of s
atterers.

Let us assume that the original wave propagates along the x-dire
tion, and let us set r

i

= (x;R

i

);

we are interested in the wave s
attered by a sli
e of thi
kness �X, between X and X +�X; we

get
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; (18)

whi
h 
an be approximated by

�u

s

=

u

0

nvk

2

4�

�X

Z

dR

e

ikR

R

e

ikX

= i

u

0

nvk

2

2k

�Xe

ikXx

= i

nvk

2

2k

u(X)�X : (19)

Up to a phase fa
tor (i), this is the loss of the in
ident wave, i.e.

�u = �

nvk

2

2k

u�x ; (20)

whi
h shows that the wave a
quires a damping fa
tor u! u

��x

, where

� =

1

2

nvk (21)

(for the present purpose we may take k = k).

A similar estimation 
an be done in two dimensions, where it is 
onvenient to represent the Green

fun
tion G(r) of the Helmholtz equation

�G+ k

2

G = Æ(r) (22)
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as

G(r) =

1

(2�)

2

Z

dq

e

iqr

k

2

� q

2

(23)

(Hankel fun
tion). The 
al
ulations are similar with those given above and the result is

� =

1

2

n

s

sk ; (24)

where n

s

is the super�
ial density of the s
atterers and s is their area.

From equations (21) and (24) we 
an see that the damping 
an be redu
ed by redu
ing the e�e
tive

volume (area) nv (n

s

s) of the s
attering 
entres, and by using waves with long wavelengths, as

expe
ted.
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