Journal of Theoretical Physics

QCD
M. Apostol
Department of Theoretical Physics, Institute of Atomic Physics, Magurele-Bucharest MG-6, POBox MG-35, Romania email: apoma@theory.nipne.ro

The Dirac equation

$$
\begin{equation*}
\left[\gamma^{\mu}\left(p_{\mu}-\frac{q}{c} A_{\mu}\right)-m c\right] \psi=0,\left[i \gamma^{\mu}\left(\hbar \partial_{\mu}+i \frac{q}{c} A_{\mu}\right)-m c\right] \psi=0 \tag{1}
\end{equation*}
$$

for a particle of charge q and mass m in the external electromagnetic field with potential A_{μ} is generalized to

$$
\begin{equation*}
\left[i \gamma^{\mu}\left(\hbar \partial_{\mu}-i g \frac{q}{c} t_{a} A_{\mu}^{a}\right)-m_{f} c\right] \psi_{f}=0 \tag{2}
\end{equation*}
$$

in Quantym Chromodynamics (QCD), where $t_{a}, a=1,2 \ldots 8$ are the generators of the $S U(3)$ group,

$$
\begin{equation*}
\left[t_{a}, t_{b}\right]=i f_{a b}^{c} t_{c} \tag{3}
\end{equation*}
$$

and f (up, down, strange, charm, top, bottom) are the flavour labels of the quark fields $\psi_{f} ; A_{\mu}^{a}$ are the potentials of the gluon field, t_{a} are 3×3-matrices (color labels), ψ_{f} are color bispinor and $f_{a b}^{c}$ are the structure factors of the $S U(3)$ group; γ^{μ} are the Dirac matrices. Equation (2) is generated by the particle (quark) lagrangian which, with usual conventions, can be written as

$$
\begin{equation*}
L_{q}=\bar{\psi}_{f}\left[i \gamma^{\mu}\left(c \hbar \partial_{\mu}-i g q t_{a} A_{\mu}^{a}\right)-m_{f} c^{2}\right] \psi_{f} \tag{4}
\end{equation*}
$$

We note the change of sign of the g-term with respect to the Dirac equation, as well as the presence of the charge factor q in the g-term, where $-q$ is set equal with the electron charge $-e$. The gluon lagrangian reads

$$
\begin{equation*}
L_{g}=-\frac{1}{16 \pi} G_{\mu \nu}^{a} G_{a}^{\mu \nu}, G_{\mu \nu}^{a}=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}+g f_{b c}^{a} A_{\mu}^{b} A_{\nu}^{c}, \tag{5}
\end{equation*}
$$

where $G_{\mu \nu}^{a}$ are the gluon fields. The variation of the action with respect to the potentials A_{μ}^{a} leads to the field equations

$$
\begin{equation*}
\partial_{\nu} G_{a}^{\mu \nu}+g f_{a c}^{b} G_{b}^{\mu \nu} A_{\nu}^{c}=4 \pi g q \bar{\psi}_{f} \gamma^{\mu} t_{a} \psi_{f} ; \tag{6}
\end{equation*}
$$

$-c g q \bar{\psi}_{f} \gamma^{\mu} t_{a} \psi_{f}$ can be viewed as a density of current j_{a}^{μ}.
Since $\partial_{\mu}=\left(\partial / c \partial t, \partial_{i}\right)$ equation (2) can also be writen as

$$
\begin{equation*}
i \hbar \frac{\partial \psi}{\partial t}=\left[-i c \hbar \gamma^{0} \gamma^{i} \partial_{i}-g q \gamma^{0} \gamma^{\mu} t A_{\mu}+m c^{2} \gamma^{0}\right] \psi \tag{7}
\end{equation*}
$$

where summation over a is included and the flavor label is left aside. Now we use

$$
\gamma^{0}=\beta=\left(\begin{array}{cc}
1 & 0 \tag{8}\\
0 & -1
\end{array}\right), \gamma^{0} \gamma^{i}=\alpha^{i}=\left(\begin{array}{cc}
0 & \sigma^{i} \\
\sigma^{i} & 0
\end{array}\right),
$$

where σ^{i} are the Pauli matrices; and we use also $-i c \hbar \gamma^{i} \partial_{i}=-c \gamma^{i} p_{i}=c \gamma^{i} p^{i}=c \vec{\alpha} \mathbf{p}$, where $\mathbf{p}=-i \hbar g r a d$ is the momentum; we get

$$
\begin{equation*}
i \hbar \frac{\partial \psi}{\partial t}=\left[c \vec{\alpha} \mathbf{p}-g q t \Phi+g q t \vec{\alpha} \mathbf{A}+m c^{2} \beta\right] \psi \tag{9}
\end{equation*}
$$

where $A_{\mu}=(\Phi,-\mathbf{A})$; here we set $\psi \sim e^{-i\left(m c^{2} / \hbar\right) t}$ and write $\psi=\binom{\varphi}{\chi}$,

$$
\begin{align*}
& i \hbar \frac{\partial \varphi}{\partial t}+m c^{2} \varphi=c \vec{\sigma}\left(\mathbf{p}+g \frac{q}{c} t \mathbf{A}\right) \chi-g q t \Phi \varphi+m c^{2} \varphi \tag{10}\\
& i \hbar \frac{\partial \chi}{\partial t}+m c^{2} \chi=c \vec{\sigma}\left(\mathbf{p}+g \frac{q}{c} t \mathbf{A}\right) \varphi-g q t \Phi \chi-m c^{2} \chi
\end{align*}
$$

In the non-relativistic limit we get

$$
\begin{gather*}
\chi \simeq \frac{1}{2 m c} \vec{\sigma}\left(\mathbf{p}+g \frac{q}{c} t \mathbf{A}\right) \varphi, \\
i \hbar \frac{\partial \varphi}{\partial t}+g q t \Phi \varphi=\frac{1}{2 m}\left[\vec{\sigma}\left(\mathbf{p}+g \frac{q}{c} t \mathbf{A}\right)\right]^{2} \varphi ; \tag{11}
\end{gather*}
$$

here we use the identity $\sigma_{i} \sigma_{j}=\delta_{i j}+i \varepsilon_{i j k} \sigma_{k}$ and get finally

$$
\begin{gather*}
i \hbar \frac{\partial \varphi}{\partial t}+g q t_{a} \Phi^{a} \varphi=\frac{1}{2 m}\left[\left(\mathbf{p}+g \frac{q}{c} t_{a} \mathbf{A}^{a}\right)\right]^{2} \varphi+ \\
+g \frac{\hbar q}{2 m c} \vec{\sigma} t_{a} \operatorname{curl} \mathbf{A}^{a} \varphi-g^{2} \frac{q^{2}}{4 m c^{2}} f_{a b}^{c} t_{c} \vec{\sigma}\left(\mathbf{A}^{a} \times \mathbf{A}^{b}\right) \varphi . \tag{12}
\end{gather*}
$$

This is the analogue of the Pauli equation for strong interactions, where we can see a "magnetic" field $\operatorname{curl} \mathbf{A}^{a}$, another "magnetic" field $\sim \mathbf{A}^{a} \times \mathbf{A}^{b}$ and the quark spin $\sim \vec{\sigma}$. The last term in equation (12) can be omitted within the present approximation, since it is of second order in powers of $1 / c$.
We define the current density

$$
\begin{equation*}
j_{a}^{\mu}=c q \bar{\psi} \gamma^{\mu} t_{a} \psi \tag{13}
\end{equation*}
$$

and get the charge density

$$
\begin{equation*}
\rho_{a}=j_{a}^{0} \simeq c q \varphi^{*} t_{a} \varphi \tag{14}
\end{equation*}
$$

in the non-relativistic limit. For the current density

$$
\begin{equation*}
\mathbf{j}_{a}=c q \psi^{*} \vec{\alpha} t_{a} \psi=c q\left(\varphi^{*} t_{a} \vec{\sigma} \chi+\chi^{*} t_{a} \vec{\sigma} \varphi\right) \tag{15}
\end{equation*}
$$

in the non-relativistic limit we use χ given by equation (11) and the identity given above for $\sigma_{i} \sigma_{j}$; we get

$$
\begin{gather*}
\mathbf{j}_{a} \simeq \frac{q}{2 m}\left[\varphi^{*} t_{a}(\mathbf{p} \varphi)-\left(\mathbf{p} \varphi^{*}\right) t_{a} \varphi\right]+ \\
+\frac{g q^{2}}{2 m c}\left[\varphi^{*} t_{a}\left(t_{b} \mathbf{A}^{b}\right) \varphi+\varphi^{*}\left(t_{b} \mathbf{A}^{b}\right) t_{a} \varphi\right]+\frac{q \hbar}{2 m} \operatorname{curl}\left(\varphi^{*} t_{a} \vec{\sigma} \varphi\right) . \tag{16}
\end{gather*}
$$

Equation (6) becomes

$$
\begin{equation*}
\partial_{\nu} G_{a}^{\mu \nu}+g f_{a c}^{b} G_{b}^{\mu \nu} A_{\nu}^{c}=\frac{4 \pi}{c} g j_{a}^{\mu} \tag{17}
\end{equation*}
$$

with summation over all the flavours in the current density; or

$$
\begin{equation*}
\square A_{a}^{\mu}-\partial^{\mu} \partial_{\nu} A_{a}^{\nu}-g f_{a}^{b c} \partial_{\nu}\left(A_{b}^{\mu} A_{c}^{\nu}\right)-g f_{a c}^{b} G_{b}^{\mu \nu} A_{\nu}^{c}=-\frac{4 \pi}{c} g j_{a}^{\mu} \tag{18}
\end{equation*}
$$

We are interested in the non-relativistic limit of this equation $(c \rightarrow \infty)$. We get

$$
\begin{gather*}
-\partial_{i} \partial^{i} \Phi_{a}+g f_{a}^{b c} \Phi_{b} \partial_{i} A_{a}^{i}+g^{2}\left(A^{2}\right)_{a}^{d} \Phi_{d}=4 \pi g q \varphi_{f}^{*} t_{a} \varphi_{f} \\
-\partial_{j} \partial^{j} A_{a}^{i}+\partial^{i} \partial_{j} A_{a}^{j}+g f_{a}^{b c} \partial_{j}\left(A_{b}^{i} A_{c}^{j}\right)+ \tag{19}\\
+g f_{a c}^{b}\left(\Phi_{c} \partial^{i} \Phi_{b}+A_{j}^{c} \partial^{i} A_{b}^{j}-A_{j}^{c} \partial^{j} A_{b}^{i}\right)+g^{2}\left[\left(A^{2}\right)_{a}^{d}-\left(\Phi^{2}\right)_{a}^{d}\right] A_{d}^{i}=0
\end{gather*}
$$

where

$$
\begin{equation*}
\left(\Phi^{2}\right)_{a}^{d}=f_{e}^{d b} f_{a c}^{e} \Phi_{b} \Phi^{c},\left(A^{2}\right)_{a}^{d}=f_{e}^{d b} f_{a c}^{e} A_{b}^{j} A_{j}^{c} \tag{20}
\end{equation*}
$$

In the limit $g \gg 1$ we should have $\left(A^{2}\right)_{a}^{d}-\left(\Phi^{2}\right)_{a}^{d}=0$.
The condition $\left(A^{2}\right)_{a}^{d}-\left(\Phi^{2}\right)_{a}^{d}=0$ can also be written as $F_{a \mu}^{b} F_{b}^{d \mu}=0$, where $F_{a \mu}^{b}=f_{a c}^{b} A_{\mu}^{c}$; making use of the explicit structure factors $f_{a c}^{b}(123=1,147=246=257=345=1 / 2,156=367=-1 / 2$, $458=678=\sqrt{3} / 2)$ and computing the matrices F and F^{2} we can see that we should have $A_{\mu}^{a}=0$, $a=1,2 \ldots 7$. This makes 28 conditions for 32 unknowns. Consequently, we keep only one label a and rewrite the whole theory as

$$
\begin{gather*}
{\left[i \gamma^{\mu}\left(\hbar \partial_{\mu}-i g \frac{q}{c} t A_{\mu}\right)-m_{f} c\right] \psi_{f}=0,} \tag{21}\\
L_{q}=\bar{\psi}_{f}\left[i \gamma^{\mu}\left(c \hbar \partial_{\mu}-i g q t A_{\mu}\right)-m_{f} c^{2}\right] \psi_{f}, \tag{22}\\
L_{g}=-\frac{1}{16 \pi} G_{\mu \nu} G^{\mu \nu}, G_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}, \tag{23}\\
\partial_{\nu} G^{\mu \nu}=4 \pi g q \bar{\psi}_{f} \gamma^{\mu} t \psi_{f} . \tag{24}
\end{gather*}
$$

This is electromagnetism with color charges ($\bar{\psi} t \psi$, and flavour charges), which have no effect at this level. We have, in effect, $G^{\mu \nu}=(\mathbf{E}, \mathbf{H})$ and

$$
\begin{gather*}
\operatorname{div} \mathbf{E}=4 \pi \rho, \operatorname{div} \mathbf{H}=0 \\
\operatorname{curl} \mathbf{E}=-\frac{1}{c} \frac{\partial \mathbf{H}}{\partial t}, \operatorname{cur} l \mathbf{H}=\frac{1}{c} \frac{\partial \mathbf{E}}{\partial t}+\frac{4 \pi}{c} \mathbf{j}, \tag{25}\\
\mathbf{E}=-\frac{1}{c} \frac{\partial \mathbf{A}}{\partial t}-\operatorname{grad} \Phi, \mathbf{H}=\operatorname{curl} \mathbf{A} \tag{26}
\end{gather*}
$$

and

$$
\begin{align*}
& \frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \Phi-\Delta \Phi=4 \pi \rho \\
& \frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \mathbf{A}-\Delta \mathbf{A}=\frac{4 \pi}{c} \mathbf{j} \tag{27}
\end{align*}
$$

where we have imposed the Lorenz gauge. In the non-relativistic limit we may take $\mathbf{A}=0$ and

$$
\begin{gather*}
\Delta \Phi=4 \pi g q \varphi_{f}^{*} t \varphi_{f} \\
i \hbar \frac{\partial \varphi_{f}}{\partial t}=-\frac{\hbar^{2}}{2 m_{f}} \Delta \varphi_{f}-g q t \Phi \varphi_{f} \tag{28}
\end{gather*}
$$

It is easy to see that the system governed by these equations is unstable. Indeed,

$$
\begin{equation*}
i \hbar \int d \mathbf{r} \varphi_{f}^{*} \frac{\partial \varphi_{f}}{\partial t}=-\frac{\hbar^{2}}{2 m_{f}} \int d \mathbf{r} \varphi_{f}^{*} \Delta \varphi_{f}-\frac{1}{4 \pi} \int d \mathbf{r} \Phi \Delta \Phi>0 \tag{29}
\end{equation*}
$$

as expected from a self-interaction.

