Journal of Theoretical Physics

Founded and Edited by M. Apostol 225 (2013)

ISSN 1453-4428

On the damping coefficient of the oscillators and waves
B. F. Apostol
Department of Seismology, Institute of Earth’ Physics,
Magurele-Bucharest MG-6,
POBox MG-35, Romania
email: afelix@theory.nipne.ro

Abstract

The damping coefficients of harmonic oscillators or waves (attenuation coefficient) may
depend on the amplitude and frequency as a consequence of including non-linearities. For
higher frequencies these coefficients may vanish, leading to disruption of the oscillations, or
appreciable enhancement of the resonance.

As it is well known the equation of motion of a linear harmonic oscillator
i +wiu =0 (1)

has the general solution u = Ae*°! (A complex in general) or u = Acos(wot + ), where u is
the motion coordinate, wy is the eigenfrequency, A is the amplitude and ¢ is an initial phase; the
constants A and ¢ are determined from the initial conditions (coordinate u and velocity @ at the
initial moment). A more complex oscillator may include a damping coefficient ~,

i +wiu+yu=0, (2)

as well as non-linear contributions. The solution of equation (2) is given by

u=Ae "2 cos(wt + ) , w=Jwi —~2/4; (3)

we assume wy > /2. As it is well known, non-linear terms in powers of u in equation (2) lead to
oscillations with combined frequencies, frequency shifts or resonances at rational multiples of wy.
Here we investigate the effect of the presence of the non-linearities in the damping coefficient 7.
For small amplitudes, we may assume a general non-linear damping coefficient of the form

Y= + 71U+ i+ ..., (4)

where the averages in equation (4) are taken over the non-damped solution. We get

W= [ A costnt + ) = £ 4 (5)
wt = s cos” (wot + ) = 3

and
w2 = L /T/2 dt A%w? sin? (wot + ) = lAQwQ (6)
T J-1/2 0 ‘ 2 o
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where T is a very long interval of time. The damping coefficient becomes
Lo 1 2 2
’Y:’Yo+§’}/1A +§’}/2A w0+... ; (7)

we can see that it acquires a frequency dependence. Depending on the sign of the coefficients 7 ; 2,
the damping coefficient v may increase for high frequencies, and the oscillations get more damped,
or, it may decrease, vanish, and acquire negative values, and the oscillations are disrupted.

An oscillator acted by a periodic external force f coswt,
i +wiu + yi = fcoswt | (8)

has the particular solution
1 f

2w — w2 + dwy

u = e ™t e 9)

at resonance (w = wy)
) )
u = —fe_zwot +cc. (10)
2woy
and we can see that for a vanishing v the forced oscillations can be enhanced appreciably.

Let us consider the wave equation in one dimension
. 2 n
i—v'u =0, (11)

where v is the wave velocity. The solution of equation (11) is the wave u = A cos(wt — kx + )
where w = vk, or u = Acosw(t — x/v + to); this is a wave propagating along the x-direction,
with an initial phase ¢, related to the initial time #y,. The damping of the wave is included in the
equation

i — v 4y —fu =0, (12)
where . o o
Y =" + ’}/1’&2 + ’YQ’[LQ + ’Y3U,2 + ...,
o (13)
5 — 50 + 61’&2 + 52’&2 + 53’[/2 + ...
We get the solution
u= Acos(wt — kx + p)e 122, = \/(62/41)2 —2/4) + v2k? (14)
(with 8?/v? —4?>0 ) and
Y= + 31 A%+ 372 A%W] + $ysARWE /0P +
(15)

B =PBo+ 31A% + 35 A%wE + LB A% [v? + ... .

We can see that the damping coefficients depend on amplitude and frequency. Usually, we may take
~v = 0, and retain only the attenuation coefficient 5. Depending on the sign and magnitude of the
coefficients [ 1 2.3 we can see that the wave can be disrupted for certain frequencies (wavenumbers).
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