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Abstra
t

The damping 
oe�
ients of harmoni
 os
illators or waves (attenuation 
oe�
ient) may

depend on the amplitude and frequen
y as a 
onsequen
e of in
luding non-linearities. For

higher frequen
ies these 
oe�
ients may vanish, leading to disruption of the os
illations, or

appre
iable enhan
ement of the resonan
e.

As it is well known the equation of motion of a linear harmoni
 os
illator

�u+ !

2

0

u = 0 (1)

has the general solution u = Ae
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t

(A 
omplex in general) or u = A 
os(!

0

t + '), where u is

the motion 
oordinate, !

0

is the eigenfrequen
y, A is the amplitude and ' is an initial phase; the


onstants A and ' are determined from the initial 
onditions (
oordinate u and velo
ity _u at the

initial moment). A more 
omplex os
illator may in
lude a damping 
oe�
ient 
,
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as well as non-linear 
ontributions. The solution of equation (2) is given by
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we assume !

0

> 
=2. As it is well known, non-linear terms in powers of u in equation (2) lead to

os
illations with 
ombined frequen
ies, frequen
y shifts or resonan
es at rational multiples of !

0

.

Here we investigate the e�e
t of the presen
e of the non-linearities in the damping 
oe�
ient 
.

For small amplitudes, we may assume a general non-linear damping 
oe�
ient of the form
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where the averages in equation (4) are taken over the non-damped solution. We get
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and
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where T is a very long interval of time. The damping 
oe�
ient be
omes
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we 
an see that it a
quires a frequen
y dependen
e. Depending on the sign of the 
oe�
ients 


0;1;2

,

the damping 
oe�
ient 
 may in
rease for high frequen
ies, and the os
illations get more damped,

or, it may de
rease, vanish, and a
quire negative values, and the os
illations are disrupted.

An os
illator a
ted by a periodi
 external for
e f 
os!t,
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has the parti
ular solution
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at resonan
e (! = !
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and we 
an see that for a vanishing 
 the for
ed os
illations 
an be enhan
ed appre
iably.

Let us 
onsider the wave equation in one dimension
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where v is the wave velo
ity. The solution of equation (11) is the wave u = A 
os(!t � kx + ')

where ! = vk, or u = A 
os!(t � x=v + t

0

); this is a wave propagating along the x-dire
tion,

with an initial phase ', related to the initial time t

0

. The damping of the wave is in
luded in the

equation
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We get the solution

u = A 
os(!t� kx + ')e
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(with �
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We 
an see that the damping 
oe�
ients depend on amplitude and frequen
y. Usually, we may take


 = 0, and retain only the attenuation 
oe�
ient �. Depending on the sign and magnitude of the


oe�
ients �

0;1;2;3

we 
an see that the wave 
an be disrupted for 
ertain frequen
ies (wavenumbers).
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