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Abstrat

The damping oe�ients of harmoni osillators or waves (attenuation oe�ient) may

depend on the amplitude and frequeny as a onsequene of inluding non-linearities. For

higher frequenies these oe�ients may vanish, leading to disruption of the osillations, or

appreiable enhanement of the resonane.

As it is well known the equation of motion of a linear harmoni osillator
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(A omplex in general) or u = A os(!
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t + '), where u is

the motion oordinate, !
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is the eigenfrequeny, A is the amplitude and ' is an initial phase; the

onstants A and ' are determined from the initial onditions (oordinate u and veloity _u at the

initial moment). A more omplex osillator may inlude a damping oe�ient ,
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as well as non-linear ontributions. The solution of equation (2) is given by
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we assume !

0

> =2. As it is well known, non-linear terms in powers of u in equation (2) lead to

osillations with ombined frequenies, frequeny shifts or resonanes at rational multiples of !

0

.

Here we investigate the e�et of the presene of the non-linearities in the damping oe�ient .

For small amplitudes, we may assume a general non-linear damping oe�ient of the form
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where the averages in equation (4) are taken over the non-damped solution. We get
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where T is a very long interval of time. The damping oe�ient beomes
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we an see that it aquires a frequeny dependene. Depending on the sign of the oe�ients 

0;1;2

,

the damping oe�ient  may inrease for high frequenies, and the osillations get more damped,

or, it may derease, vanish, and aquire negative values, and the osillations are disrupted.

An osillator ated by a periodi external fore f os!t,
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has the partiular solution
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and we an see that for a vanishing  the fored osillations an be enhaned appreiably.

Let us onsider the wave equation in one dimension
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where v is the wave veloity. The solution of equation (11) is the wave u = A os(!t � kx + ')

where ! = vk, or u = A os!(t � x=v + t

0

); this is a wave propagating along the x-diretion,

with an initial phase ', related to the initial time t

0

. The damping of the wave is inluded in the

equation
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We get the solution

u = A os(!t� kx + ')e
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We an see that the damping oe�ients depend on amplitude and frequeny. Usually, we may take

 = 0, and retain only the attenuation oe�ient �. Depending on the sign and magnitude of the

oe�ients �

0;1;2;3

we an see that the wave an be disrupted for ertain frequenies (wavenumbers).
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