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Abstract

It is shown that the Bethe ansatz is a wrong solution to a differential equation, violates
the principle of particle identity, and infringes upon the wavefunction continuity.

In 1931 Bethe[1] attempted to solve the magnetic chains by what later became known as the
Bethe ansatz. A reversed spin in such a chain is a wave, or a quantum particle, called magnon,
and Bethe realized that the problem is a two-particle problem with a hamiltonian

H = t(x1) + t(x2) + U(x1 − x2) , (1)

where t(x1,2) are kinetic terms and U(x1 − x2) is a short-range interaction. Later on, the same
problem has been recognized in one-dimensional ensembles of many particles interacting by δ-
potentials, U(x1−x2) = Uδ (x1 − x2), and the Bethe ansatz has been applied to bosons,[2]

′
[3] and

to attractive[4] and repulsive[5] fermions. The Hubbard model[6] in one dimension has also been
approached by Bethe ansatz,[7] and the efforts of understanding the meaning of these computations
are nowadays known as the ”strongly-correlated electrons” problem.[8]

′
[9]

We show in this Note that the Bethe ansatz is a wrong ”solution” to a differential equation,
violates the principle of particle identity, and infringes upon the wavefunctions continuity.

Bethe[1] remarked that, since U(x1 − x2) = 0 for x1 < x2, the wavefunction of (1) can be taken
as a product of plane waves,

ϕ(x1, x2) = 〈x1x2 | k1k2〉 , x1 < x2 , (2)

where k1,2 are wavevectors; the corresponding ”eigenvalue” of H is t(k1) + t(k2). For x1 > x2 the
interaction vanishes again, and, strangely, Bethe takes here the wavefunction as Aϕ(x1, x2), where
A remains to be determined. The Bethe ansatz begins therefore, wrongly, with

ψ(x1, x2) =
〈x1x2 | k1k2〉 , x1 < x2 ,
A 〈x1x2 | k1k2〉 , x1 > x2 ,

(3)

for the motion of the particle pair. This is a wrong ”solution” to the differential equation of the
eigenvalue problem. The technical literature calls it the ”diffractionless” of the Bethe ansatz.[10]
The coefficient A is determined from the equation at x1 = x2, and ψ is symmetrized as for identical
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particles. The output is a discontinous ψ at x1 = x2, as if this point would be a boundary for the
problem. Indeed, the technical literature calls it so.[11] (Sometimes.the steps are reversed, i.e. ψ
is symmetrized first and A is determined thereafter; now ψ is continuous, but its derivatives are
not at x1 = x2). The ansatz infringes, therefore, upon the wavefunctions continuity. Finaly, the
principle of particle identity is violated, since

ψ(x2, x1) =
A 〈x2x1 | k1k2〉 , x1 < x2 ,
〈x2x1 | k1k2〉 , x1 > x2 ,

(4)

(up to phase factor) is not a solution, if ψ(x1, x2) is one. When the symmetrization is taken first,
as, for instance,

ψs(x1,x2) = ψ(x1, x2) + ψ(x2, x1) =

=
〈x1x2 | k1k2〉 + A 〈x2x1 | k1k2〉 , x1 < x2 ,
A 〈x1x2 | k1k2〉 + 〈x2x1 | k1k2〉 , x1 > x2 ,

(5)

the antisymmetrical ψ is not obtained for the same A; which shows again that the principle of
particle identity is violated. The technical literature refers to this violation as to the ”kaleidoscopy”
of the Bethe ansatz.[10]

The correct procedure is the following. If ϕ(x1, x2) = 〈x1x2 | k1k2〉 is a solution for x1 < x2

then χ(x1, x2) = 〈x1x2 | k3k4〉 is a solution for x1 > x2, where t(k3) + t(k4) = t(k1) + t(k2) and
k1 + k2 = k3 + k4 for continuity. The equation is thereafter solved at x1 = x2, and, finally,
the solution is ”symmetrized”; more exactly, the symmetry under the particle permutations is
read on the solutions. Of course, the usual course is to start with the symmetrized free solution
ϕ(x2, x1) = ±χ(x1, x2) = ±〈x1x2 | k3k4〉, whence k3 = k2, k4 = k1, and solve the interacting
problem; as it has been done for the Hubbard model in Ref.12.

The coefficient A in the Bethe ansatz is a phase shift, and much of the efforts in dealing with the
strongly-correlated electrons ”problem” are directed toward revealing the ”meaning” of this phase
shift. The question is ”technically” related to the function

f(E) = −U

N

∑
k

1

t(k) + t)q − k) − E
(6)

in the Hubbard model, where N is the number of lattice sites, which is not read as the eigenvalue
equation f(E) = 1, but as a p.v. integral, whose ”meaning” remains to be ”established”.[8]

′
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Other ”technical” connections with the particle collisions are obvious in the Bethe ansatz.

One may say that, indeed, the electrons are ”strongly correlated” by the Bethe ansatz, by requiring
k3 = k1, k4 = k2, by introducing the boundary at x1 = x2, and by restricting the symmetry under
particle permutations.
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