Journal of Theoretical Physics

On the Bethe ansatz
M. Apostol
Department of Theoretical Physics, Institute of Atomic Physics, Magurele-Bucharest MG-6,
POBox Mg-35, Romania
e-mail: apoma@theor1.ifa.ro

Abstract

It is shown that the Bethe ansatz is a wrong solution to a differential equation, violates the principle of particle identity, and infringes upon the wavefunction continuity.

In 1931 Bethe[1] attempted to solve the magnetic chains by what later became known as the Bethe ansatz. A reversed spin in such a chain is a wave, or a quantum particle, called magnon, and Bethe realized that the problem is a two-particle problem with a hamiltonian

$$
\begin{equation*}
H=t\left(x_{1}\right)+t\left(x_{2}\right)+U\left(x_{1}-x_{2}\right) \tag{1}
\end{equation*}
$$

where $t\left(x_{1,2}\right)$ are kinetic terms and $U\left(x_{1}-x_{2}\right)$ is a short-range interaction. Later on, the same problem has been recognized in one-dimensional ensembles of many particles interacting by δ potentials, $U\left(x_{1}-x_{2}\right)=U \delta\left(x_{1}-x_{2}\right)$, and the Bethe ansatz has been applied to bosons, [2] [3] and to attractive[4] and repulsive[5] fermions. The Hubbard model[6] in one dimension has also been approached by Bethe ansatz, $[7]$ and the efforts of understanding the meaning of these computations are nowadays known as the "strongly-correlated electrons" problem. [8]' [9]

We show in this Note that the Bethe ansatz is a wrong "solution" to a differential equation, violates the principle of particle identity, and infringes upon the wavefunctions continuity.

Bethe[1] remarked that, since $U\left(x_{1}-x_{2}\right)=0$ for $x_{1}<x_{2}$, the wavefunction of (1) can be taken as a product of plane waves,

$$
\begin{equation*}
\varphi\left(x_{1}, x_{2}\right)=\left\langle x_{1} x_{2} \mid k_{1} k_{2}\right\rangle \quad, \quad x_{1}<x_{2} \tag{2}
\end{equation*}
$$

where $k_{1,2}$ are wavevectors; the corresponding "eigenvalue" of H is $t\left(k_{1}\right)+t\left(k_{2}\right)$. For $x_{1}>x_{2}$ the interaction vanishes again, and, strangely, Bethe takes here the wavefunction as $A \varphi\left(x_{1}, x_{2}\right)$, where A remains to be determined. The Bethe ansatz begins therefore, wrongly, with

$$
\psi\left(x_{1}, x_{2}\right)=\begin{array}{cl}
\left\langle x_{1} x_{2} \mid k_{1} k_{2}\right\rangle, & x_{1}<x_{2} \tag{3}\\
A\left\langle x_{1} x_{2} \mid k_{1} k_{2}\right\rangle, & x_{1}>x_{2}
\end{array}
$$

for the motion of the particle pair. This is a wrong "solution" to the differential equation of the eigenvalue problem. The technical literature calls it the "diffractionless" of the Bethe ansatz.[10] The coefficient A is determined from the equation at $x_{1}=x_{2}$, and ψ is symmetrized as for identical
particles. The output is a discontinous ψ at $x_{1}=x_{2}$, as if this point would be a boundary for the problem. Indeed, the technical literature calls it so.[11] (Sometimes.the steps are reversed, i.e. ψ is symmetrized first and A is determined thereafter; now ψ is continuous, but its derivatives are not at $x_{1}=x_{2}$). The ansatz infringes, therefore, upon the wavefunctions continuity. Finaly, the principle of particle identity is violated, since

$$
\psi\left(x_{2}, x_{1}\right)=\begin{array}{cl}
A\left\langle x_{2} x_{1} \mid k_{1} k_{2}\right\rangle, & x_{1}<x_{2}, \tag{4}\\
\left\langle x_{2} x_{1} \mid k_{1} k_{2}\right\rangle, & x_{1}>x_{2}
\end{array}
$$

(up to phase factor) is not a solution, if $\psi\left(x_{1}, x_{2}\right)$ is one. When the symmetrization is taken first, as, for instance,

$$
\begin{gather*}
\psi_{s}\left(x_{1}, x_{2}\right)=\psi\left(x_{1}, x_{2}\right)+\psi\left(x_{2}, x_{1}\right)= \\
=\begin{array}{ll}
\left\langle x_{1} x_{2} \mid k_{1} k_{2}\right\rangle+A\left\langle x_{2} x_{1} \mid k_{1} k_{2}\right\rangle, & x_{1}<x_{2}, \\
A\left\langle x_{1} x_{2} \mid k_{1} k_{2}\right\rangle+\left\langle x_{2} x_{1} \mid k_{1} k_{2}\right\rangle, & x_{1}>x_{2},
\end{array} \tag{5}
\end{gather*}
$$

the antisymmetrical ψ is not obtained for the same A; which shows again that the principle of particle identity is violated. The technical literature refers to this violation as to the "kaleidoscopy" of the Bethe ansatz.[10]

The correct procedure is the following. If $\varphi\left(x_{1}, x_{2}\right)=\left\langle x_{1} x_{2} \mid k_{1} k_{2}\right\rangle$ is a solution for $x_{1}<x_{2}$ then $\chi\left(x_{1}, x_{2}\right)=\left\langle x_{1} x_{2} \mid k_{3} k_{4}\right\rangle$ is a solution for $x_{1}>x_{2}$, where $t\left(k_{3}\right)+t\left(k_{4}\right)=t\left(k_{1}\right)+t\left(k_{2}\right)$ and $k_{1}+k_{2}=k_{3}+k_{4}$ for continuity. The equation is thereafter solved at $x_{1}=x_{2}$, and, finally, the solution is "symmetrized"; more exactly, the symmetry under the particle permutations is read on the solutions. Of course, the usual course is to start with the symmetrized free solution $\varphi\left(x_{2}, x_{1}\right)= \pm \chi\left(x_{1}, x_{2}\right)= \pm\left\langle x_{1} x_{2} \mid k_{3} k_{4}\right\rangle$, whence $k_{3}=k_{2}, k_{4}=k_{1}$, and solve the interacting problem; as it has been done for the Hubbard model in Ref.12.

The coefficient A in the Bethe ansatz is a phase shift, and much of the efforts in dealing with the strongly-correlated electrons "problem" are directed toward revealing the "meaning" of this phase shift. The question is "technically" related to the function

$$
\begin{equation*}
f(E)=-\frac{U}{N} \sum_{k} \frac{1}{t(k)+t) q-k)-E} \tag{6}
\end{equation*}
$$

in the Hubbard model, where N is the number of lattice sites, which is not read as the eigenvalue equation $f(E)=1$, but as a p.v. integral, whose "meaning" remains to be "established". [8]' [9] Other "technical" connections with the particle collisions are obvious in the Bethe ansatz.

One may say that, indeed, the electrons are "strongly correlated" by the Bethe ansatz, by requiring $k_{3}=k_{1}, k_{4}=k_{2}$, by introducing the boundary at $x_{1}=x_{2}$, and by restricting the symmetry under particle permutations.

References

[1] H. A. Bethe, Z. Physik 71205 (1931).
[2] E. Lieb and W. Liniger, Phys. Rev. 1301605 (1963).
[3] E. Lieb, Phys. Rev. 1301616 (1963).
[4] M. Gaudin, Phys. Lett. A24 55 (1967).
[5] C. N. Yang, Phys. Rev. Lett. 191312 (1967).
[6] J. Hubbard, Proc. Roy. Soc. A276 238 (1963).
[7] E. Lieb and F. Y. Wu, Phys. Rev. Lett. 201445 (1968).
[8] P. W. Anderson, Phys. Rev. Lett. 641839 (1990).
[9] P. W. Anderson, Phys. Rev. Lett. 652306 (1990).
[10] B. Sutherland, in Exactly Solvable Problems in Condensed Matter and Relativistic Field Theory, eds. B. S. Shastry et al, Lecture Notes in Physics 242, Springer (1985), p.1.
[11] N. Andrei, Integrable Models in Condensed Matter Physics, ICTP Summer Course, Trieste (1992).
[12] M. Apostol, J. Theor. Phys. 22 (1997).

