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Abstract

The representation of a localized faulting seismic source is reformulated, without resorting
to the mechanical torque interpretation of the seismic moment tensor. A volume seismic
source is introduced by means of the pressure exerted in a small spherical cavity. The elastic
waves equation with localized (point) sources is discussed in an isotropic half space bounded
by a plane surface, including the boundary conditions. The near-field approximation is used to
get the solution of a quasi-static deformation, and the transient regime of far-field propagating
elastic waves is discussed for the (time-pulse) seismic sources introduced here.
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Introduction. The main problem in Seismology is the propagation of the seismic waves. It
gives information about processes occurring in earthquake focal region, the nature and structure
of the Earth’s interior, and the effect the seismic waves have on the Earth’s surface. The problem
originates in the works of Rayleigh, Lamb and Love.[1]-[3] In a simplified model, the Earth is
viewed as an isotropic elastic half-space bounded by a plane surface, and the seismic sources
are localized beneath the surface. For sufficiently long distances the localization of the seismic
sources may be represented by δ-functions, or their derivatives (point sources). The double-couple
representation of point seismic sources by means of the seismic moment tensor emerged gradually
in the first half of the 20th century.[4]-[17]

The standard way of treating the seismic waves is to employ the (formal) Green function for the
elastic waves equation and the Green theorem (the so-called Betti’s representation), for a general,
anisotropic, elastic body.[18]-[21] In this treatment the seismic sources are located on internal
surfaces, either as faulting sources or volume sources. The faulting seismic sources are related
to the discontinuity occurring in the displacement across the faulting surface (fault slip), while
the volume sources are related to the dilatational strain.[6, 7] In both cases equivalent forces
are derived for the seismic source representation, and the seismic moment is introduced. The
interpretation of the "double-couple" representation of the sesmic moment as a mechanical torque
(a couple of forces), while ensuring the vanishing of the net force and angular momentum, leaves
open the question of the uniqueness of the double-couple distribution. We reformulate here the
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faulting source and the introduction of the seismic moment tensor, and introduces a volume source
related to the pressure exerted in a small spherical cavity.

The elastic waves equation with sources for a half space bounded by a plane surface is discussed,
including boundary conditions (usually, for a free surface). This equation is suitable for a sta-
tionary regime; we give an approximate near-field solution with the seismic sources introduced
here for quasi-static displacements (especially for the surface). The far-field waves generated by
these seismic sources (with δ-like time pulses) are given in the transient regime, where the relevant
distances are sufficiently long in comparison with the wavelengths.

Seismic sources. The seismic sources are concentrated in small volumes. The linear dimensions
of these regions are much smaller than the seismic wavelengths and distances of interest, so we may
view them as point sources. In a faulting source the slip and the associated force occur, during
an earthquake, along one direction, lying on the fault surface. Let n be the unit vector along
this direction. The seismic load in the focus consists of two opposing forces, usually at (quasi-)
equilbrium, so that the total force and angular momentum are vanishing. During an earthquake,
the resistance of the rocks in the focus yields, so that we have a localized, active distribution of
forces which is proportional to ∂δ(R−R0)/∂n, where R0 is the position of the focus. This can also
be written as fil∂iδ(R−R0) = fli∂iδ(R−R0) = flni∂iδ(R−R0), where fi are the components of
the force with magnitude f acting along the direction n and li are the components of the spatial
extension of the focus along the same direction n; the function δ in these expressions should be
understood as a function localized over the distance l along the direction n, and, similarly, along
two other transverse directions. The quantity fl is proportional to the seismic moment M (since
f can be represented as f = µA, where µ is the rigidity modulus and A is the area of the fault);
we prefer to use the seismic moment divided by density m = M/ρ; then, the force distribution
per unit mass reads

F(R, t) = m(t)ni∂iδ(R−R0)n , Fi(R, t) = m(t)ninj∂jδ(R−R0) , (1)

where m(t) has a certain time dependence during the earthquake; usually, this function is localized
over a duration T , during which the earthquake lasts. The force distribution given by equation (1)
represents a point linear dipole; since a strain occurring along a direction n may generate forces
directed both along n and along the two directions perpendicular to n, the force distribution given
by equation (1) may be generalized by replacing m(t)ninj by the tensor mij(t):

Fi(R, t) = mij(t)∂jδ(R−R0) ; (2)

in order to have a vanishing angular momentum, the tensor of the seismic moment must be
symmetric; Equations (1) and (2) provide the "double-couple" representation of a faulting source.

The force distribution localized in a volume source with a small radius a can be written as

F(R, t) = p(t)
R−R0

|R−R0|
θ (a− |R−R0|) , (3)

where p(t) = f(t)/a3 is force per unit volume, divided by density (force per unit mass).

Elastic waves equation. The elastic waves equation[22]

ü− c2t∆u− (c2l − c2t )grad · divu = F , (4)

where u is the displacement, cl,t are the velocities of the "longitudinal" and, respectively, "trans-
verse" waves and F is force per unit mass, can be decomposed into two equations

D̈ − c2l∆D = divF ,

ü− c2t∆u = F+ (c2l − c2t )gradD,
(5)
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by taking the div in equation (4), and denoting D = divu. In the second equation (5) the
dilatational waves governed by D become a source for the "transverse" waves. For a half space
z < 0 bounded by the plane surface z = 0 it is convenient to use the in-plane poistion vector r,

R = (r, z), and the in-plane (horizontal) displacement u by changing the notation u → (u, v); v is
the displacement component perpendicular to the surface. Similarly, it is convenient to introduce
the time and in-plane Fourier transformations; the first equation (5) becomes

d2D

dz2
+ κ2

lD = − 1

c2l

(

ikFxy +
∂Fz

∂z

)

, (6)

where ω2 = c2l (k
2 + κ2

l ), k is the in-plane wavevector and F = (Fxy, Fz) (for simplicity we use
the same notations for functions and their Fourier transforms, the difference being easily seen
from the context). Making use of the Green function eiκl|z|/2iκl of the one-dimensional Helmholtz
equation, the solution of equation (6) is readily obtained as

D =
i

2κlc2l
S1 + Aeiκl|z| , (7)

where

S1 =
∫

dz
′

e
iκl

∣

∣

∣
z−z

′
∣

∣

∣

[

ikFxy(z
′

) +
∂Fz(z

′

)

∂z′

]

(8)

and A is a constant; the integration is performed from z = −∞ to z = 0. Similarly, the solutions
of the second equation (5) is

u = i
2κtc2t

S2 − i(1−η)
4κtκlc

2

t
kS3 − i(1−η)

2ηκt
kA

(

2κt

κ2

t−κ2

l
eiκl|z| − 1

κt−κl
eiκt|z|

)

,

v = i
2κtc2t

S4 − 1−η
4κtκlc

2

t
S5 +

i(1−η)
2ηκt

κlA
(

2κt

κ2

t−κ2

l
eiκl|z| − 1

κt−κl
eiκt|z|

)

+Beiκt|z| ,

(9)

where

S2 =
∫

dz
′

e
iκt

∣

∣

∣

z−z
′
∣

∣

∣

Fxy(z
′

) , S3 =
∫

dz
′

e
iκt

∣

∣

∣

z−z
′
∣

∣

∣

S1(z
′

) ,

S4 =
∫

dz
′

e
iκt

∣

∣

∣
z−z

′
∣

∣

∣

Fz(z
′

) , S5 =
∫

dz
′

e
iκt

∣

∣

∣
z−z

′
∣

∣

∣

S
′

1(z
′

) ,

(10)

ω2 = c2t (k
2 + κ2

t ) and η = c2t/c
2
l ; it is sufficient to include a free solution of the form Beiκt|z| in v.

The boundary conditions for a pressure P (divided by density ρ) acting upon the surface z = 0 are
given by njσij = −ρPi for z = 0, where n = (0, 0, 1) is the unit vector normal to the surface (with

components nj) and σij is the stress tensor. Making use of σij = E
1+σ

(

uij +
σ

1−2σ
ukkδij

)

, where
uij is the strain tensor, E is Young’s modulus and σ is Poisson’s ratio, these boundary conditions
read

ku
1 + ik2v0 = −2ρ(1+σ)

E
kPxy ,

(1− σ)v1 + iσku0 = −ρ(1+σ)(1−2σ)
E

Pz ,

(11)

where u
0, v0 are the values of the functions for z = 0, u1, v1 are the values of the first derivatives of

the functions for z = 0 and P = (Pxy, Pz); using the expressions c2l = E(1− σ)/ρ(1 + σ)(1− 2σ),
c2t = E/2ρ(1 + σ) for velocities,[22] equations (11) become

ku
1 + ik2v0 = − 1

c2t
kPxy ,

v1 + i(1− 2η)ku0 = − η
c2t
Pz .

(12)
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Using u and v given by equation (9), the boundary conditions become

(1−η)(κt−κl)
2ηκt(κt+κl)

k2A+ ik2B = − i
2κtc2t

kS
′

2(0)+

+ i(1−η)
4κtκlc

2

t
k2S

′

3(0) +
k2

2κtc2t
S4(0) +

i(1−η)
4κtκlc

2

t
k2S5(0)− 1

c2t
kPxy ,

1−η
2ηκt(κt+κl)

[(1− 2η)k2 − κtκl]A− iκtB = − i
2κtc2t

S
′

4(0)+

+ 1−η
4κtκlc

2

t
S

′

5(0) +
1−2η
2κtc2t

kS2(0)− (1−η)(1−2η)
4κtκlc

2

t
k2S3(0)− η

c2t
Pz .

(13)

With the solution for the coefficients A and B of this system of equations the displacement in the
half-space is completely determined. Although pretty unpracticable, the solution of the elastic
waves equation is reduced by the above equations to quadratures.

Near-field approximation. In the near-field, or quasi static approximation we may take
ω2/c2t,l ≃ 0 and get κt,l ≃ ik; in this approximation the z-dependence of the waves is damped.
Equations (9) give the displacement

u ≃ 1
2c2k

S2 +
i(1−η)
4c2k2

kS3 +
i(1−η)
4ηk2

kAe−k|z| ,

v ≃ 1
2c2k

S4 +
1−η
4c2k2

S5 +
[

1−η
4ηk

A+B
]

e−k|z| ,

(14)

where we set approximately ct = c and η 6= 1; this latter approximation affects only the numerical
factors. Within the same approximation the boundary conditions given by equations (13) (for a
free surface) become

ik2B ≃ − 1
2c2k

kS
′

2(0)− i(1−η)
4c2

S
′

3(0)− ik
2c2

S4(0)− i(1−η)
4c2

S5(0) ,

− (1−η)2

2η
A+ kB ≃ − 1

2c2k
S

′

4(0)− 1−η
4c2k2

S
′

5(0)− i(1−2η)
2c2k

kS2(0)+

+ (1−η)(1−2η)
4c2

S3(0) .

(15)

Vertical faulting source. We consider now a vertical faulting source given by equation the force
(per unit mass) given by equation (1):

Fz = m(t)δ(r)∂zδ(z − z0) , (16)

where z0 < 0; its Fourier transform is

Fz = m(ω)∂zδ(z − z0) . (17)

Making use of this force we compute the source terms S1...5 given by equations (8) and (10); the
calculations are straightforward, and we get

S1 = m(ω)
[

2iκlδ(z − z0)− κ2
l e

iκl|z−z0|
]

, S2 = 0 ,

S3 = m(ω)
[

2iκle
iκt|z−z0| − κ2

l I
]

,

S4 = im(ω)κtsgn(z − z0)e
iκt|z−z0| ,

S5 = m(ω)
[

−2κtκlsgn(z − z0)e
iκt|z−z0| + κ2

l
∂I
∂z0

]

,

(18)
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where

I =
∫

dz
′

e
iκt

∣

∣

∣

z−z
′
∣

∣

∣

e
iκl

∣

∣

∣

z
′
−z0

∣

∣

∣

=

=







− 2iκl

κ2

t−κ2

l

[

eiκt|z−z0| − eiκl|z−z0|
]

− i
κt+κl

e−iκtz−iκlz0 , z < z0 ,

− 2iκt

κ2

t−κ2

l

[

eiκt|z−z0| − eiκl|z−z0|
]

− i
κt+κl

e−iκtz−iκlz0 , z > z0 .

(19)

Using κt − κl ≃ ω2(1− η)/2ikηc2 and setting κt,l ≃ ik we get

I ≃ − 1
2k
e−k|z+z0| ,

S3 = −m(ω)k
[

2e−k|z−z0| + 1
2
e−k|z+z0|

]

,

S4 = −m(ω)ksgn(z − z0)e
−k|z−z0| ,

S5 = m(ω)k2
[

2sgn(z − z0)e
−k|z−z0| − 1

2
e−k|z+z0|

]

;

(20)

making use of these source-terms in equations (15) we get the constants A and B,

A =
m(ω)k

c2
ae−k|z0| , B =

m(ω)

c2
be−k|z0| , (21)

where a and b are numerical factors (affected by small errors within this approximation),

a =
η(1− 2η + 5η2)

2(1− η)2
, b =

3η − 1

4
. (22)

Now we can write the displacement given by equations (14) as

u = − im(ω)(1−η)
2c2

k
k

(

e−k|z−z0| + η−2a
4η

e−k|z+z0|
)

,

v = −m(ω)
2c2

[

ηsgn(z − z0)e
−k|z−z0| − 2a(1−η)+8ηb−η(1−η)

4η
e−k|z+z0|

]

.

(23)

In order to compute the Fourier transforms of the displacement given by equations (23) we need
the integrals

∫

dk
eikr

k
e−k|z| =

2π

R
,
∫

dkeikre−k|z| =
2π |z|
R3

, (24)

where R = (r2 + z2)1/2). We get finally

u = m(t)(1−η)
4πc2

(

1
R3

1

+ η−2a·
4η

1
R3

2

)

r ,

v = m(t)
4πc2

[

−η z−z0
R3

1

+ 2a(1−η)+8ηb−η(1−η)
4η

· |z+z0|
R3

2

]

,

(25)

where R1,2 = [r2 + (z ∓ z0)
2]

1/2
. On the surface z = 0 the displacement is given by

u
0 = m(t)

4πc2
· (1−η)(5η−2a)

4η
· r
R3

0

,

v0 = m(t)
4πc2

· 2a(1−η)+8ηb−η(1−5η)
4η

· |z0|
R3

0

,

(26)

where R0 = (r2+ z20)
1/2; we can see that the maximum values of the displacement are of the order

m/c2z20 , reached for r ≃ |z0| /
√
2 for the horizontal displacement and for r = 0 for the vertical

displacement.
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Horizontal faulting source. The horizontal faulting force given by equation (1) is

Fxy = m(t)ni∂iδ(r)δ(z − z0)n , (27)

with the Fourier tranform

Fxy = im(ω)knδ(z − z0)n , (28)

where n is the in-plane unit vector which defines the fault direction. The source terms S1...5 given
by equations (8) and (10) are

S1 = −m(ω)(kn)2eiκl|z−z0| , S2 = im(ω)(kn)neiκt|z−z0| ,

S3 = −m(ω)(kn)2I , S5 = m(ω)(kn)2 ∂
∂z0

I ,
(29)

where I is given by equation (19) (S4 = 0). Within the near-field approximation the above
expressions become

S1 = −m(ω)(kn)2e−k|z−z0| , S2 = im(ω)(kn)ne−k|z−z0| ,

S3 = m(ω) (kn)
2

2k
e−k|z+z0| , S5 = −1

2
m(ω)(kn)2e−k|z+z0| .

(30)

Equations (15) give the coefficients

A = −m(ω)
c2k

(kn)2 η(1−6η+η2)
(1−η)2

e−k|z0| ,

B = m(ω)
2c2k2

(kn)2e−k|z0|

(31)

and equations (14) give the displacement

u = im(ω)
2c2

[

kn
k
ne−k|z−z0| − 1−10η+η2

4(1−η)
(kn)2

k3
ke−k|z+z0|

]

,

v = m(ω)
8c2

(kn)2

k2
1+10η−3η2

1−η
e−k|z+z0| ;

(32)

the Fourier tranforms of the displacement are

u = im(t)
2(2π)2c2

(

I1n− 1−10η+η2

4(1−η)
I2

)

,

v = m(t)
8(2π)2c2

1+10η−3η2

1−η
I3 ,

(33)

where
I1 =

∫

dkkn
k
eikre−k|z−z0| ,

I2 =
∫

dk (kn)2

k3
keikre−k|z+z0| ,

I3 =
∫

dk (kn)2

k2
eikre−k|z+z0| .

(34)

The calculation of these integrals is straightforward, by means of equations (24) and some special
manipulations. We get immediately

I1 = −in
∂

∂r

2π

R1

= 2π
inr

R3
1

, (35)
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where R1 = [r2 + (z − z0)
2]

1/2
. Then, we notice that

∂I3
∂ |z + z0|

= in
∂

∂r
I1(z0 → −z0) = −2π

[

1

R3
2

− 3(nr)2

R5
2

]

, (36)

where R2 = [r2 + (z + z0)
2]

1/2
; the integration can be effected straighforwardly in equation (36)

leading to

I3 = −π
[

1
R2(R2+|z+z0|)

− (nr)2 2R2+|z+z0|

R3

2
(R2+|z+z0|)

2

]

; (37)

further, we notice that
∂I2

∂ |z + z0|
= i

∂

∂r
I3 , (38)

which gives access to I2.

The displacement of the surface z = 0 is of particular interest. For z = 0 and r ≪ |z0| the integrals
I1...3 behave as

I1 ≃ 2π inr
|z0|

3 , I3 ≃ − π
2|z0|

2

[

1− 3r2

4z2
0

− (nr)2

2z2
0

]

,

I2 ≃ − iπ
4|z0|

3

[

r+ 2
3
(nr)n

]

;

(39)

the corresponding displacement is

u
0 ≃ − m(t)

32π(1−η)c2 |z0|
3 [(9− 18η + η2)(nr)n+ (1− 10η + η2)r] ,

v0 ≃ − m(t)
64πc2z2

0

1+10η−3η2

1−η

[

1− 3r2

z2
0

− (nr)2

2z2
0

]

;

(40)

we can see that the horizontal displacement has a maximum value ≃ m/c2z20 for r of the order
|z0|, while the vertical displacement decreases to zero from the maximum value ≃ m/c2z20 reached
at the origin.

Volume source. The force generated by a localized volume source is

Fxy = p(t)
r

R1
θ(a−R1) , Fz = p(t)

z − z0
R1

θ(a− R1) (41)

(equation (2)), where R1 = [r2 + (z − z0)
2]
1/2

; its Fourier transform

Fxy = p(ω)
∫

dre−ikr r
R1

θ(a− R1) , Fz = p(ω)
∫

dre−ikr z−z0
R1

θ(a−R1) (42)

can be calculated straightforwardly: we introduce k = k(cosα, sinα), r = r(cosϕ, sinϕ) and
change the integration over r to an integration over R1; we get

Fxy ≃ −iπp(ω)k
[

1
3
a3 + 2

3
|z − z0|3 − a(z − z0)

2
]

,

Fz ≃ 2πp(ω)(z − z0) [a− |z − z0|] .

(43)

for |z − z0| < a and kr ≪ 1. Within the same approximation we get from equations (8) and (10)

S1 ≃ 4πp(ω)a2eiκl|z−z0| , S3 ≃ 8πp(ω)a3eiκt|z−z0| ,

S2 ≃ 0 , S4 ≃ 0 , S5 ≃ 0 .
(44)
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The near-field equations (14) and (15) give

A ≃ 8π
η2

1− η

p(ω)a3

c2
e−k|z0| , B ≃ 2π(1− η)

p(ω)a3

c2k
e−k|z0| (45)

and
u ≃ 2πip(ω)a

3

c2

[

(1− η)e−k|z−z0| + ηe−k|z+z0|
]

k
k2

,

v ≃ 2π p(ω)a3

c2k
e−k|z+z0| .

(46)

We can see that, within this approximation, only dilatation contributes to the displacement, as
expected, and, especially, the vertical dilatation; while the horizontal displacement exhibits both a
direct and an image source, the vertical displacement includes only the image source. The inverse
Fourier transforms of the displacement given by equations (46) lead to

u = ip(t)a
3

2πc2

[

(1− η)
∫

dk k
k2
eikre−k|z−z0| + η

∫

dk k
k2
eikre−k|z+z0|

]

,

v = p(t)a3

2πc2

∫

dk eikr

k
e−k|z+z0| = p(t)a3

2πc2
· 1
R2

,

(47)

where R2 = [r2 + (z + z0)
2]
1/2

. The integral

I4 =
1

2π

∫

dk
k

k2
eikre−k|z| (48)

which appears in equations (47) can be calculated either by using Bessel functions or by using the
identity

∂

∂ |z|I4 = i
∂

∂r

∫

dk
1

k
eikre−k|z| (49)

and integrating over |z|. The result is

I4 =
ir

R(R + |z|) (50)

and

u = −p(t)a3

c2

[

(1− η)
1

R1 (R1 + |z − z0|)
+ η

1

R2 (R2 + |z + z0|)

]

r , (51)

where R = (r2 + z2)
1/2

. By setting z = 0 in u and v given here we get the quasi-static surface
displacement due to a volume source.

Force on the surface. We give here the displacement caused by a force f localized on the surface
z = 0; in equations (13) P = fδ(r) (where f is divided by density). For a slow time variation
(ω ≃ 0) we may use the near-field (quasi-static) approximation κt,l ≃ ik; equations (13) give the
constants

A =
2η

c2t (1− η)2

(

ikfxy
k

+ ηfz

)

, B =
i

c2t

kfxy

k2
(52)

and equations (14) give the displacements

u = − 1
2c2t (1−η)

[

k(kfxy)
k3

− iηfz
k
k2

]

e−k|z| ,

v = 1
2c2t (1−η)

(

3−2η
2

ikfxy
k2

+ ηfz
1
k

)

e−k|z| .

(53)
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The inverse Fourier transforms lead to

u = − 1
4πc2t (1−η)

[

1
2π

∫

dkk(kfxy)
k3

eikre−k|z| − iη
2π
fz
∫

dk k
k2
eikre−k|z|

]

,

v = 3−2η
8πc2t (1−η)

i
2π

∫

dkkfxy
k2

eikre−k|z| + η
4πc2t (1−η)

fz
1
2π

∫

dk eikr

k
e−k|z| .

(54)

The last integral in the second equation (54) is 1/R, where R = (r2 + z2)1/2 (equation (24)); the
last integral in the first equation (54) is I4 given by equation (50). We denote

I5 =
1

2π

∫

dk
kfxy

k2
eikre−k|z| (55)

and notice that
∂I5
∂ |z| = − 1

2π
I1 = −ifxyr

R3
, (56)

where I1 is given by equation (35); we get by integration

I5 =
2ifxyr

R(R + |z|) (57)

and

v = − 1

4πc2t (1− η)R

[

(3− 2η)
fxyr

R+ |z| − ηfz

]

. (58)

The horizontal component from equations (54) is given by

u = − 1

4πc2t (1− η)

[

I6 + ηfz
r

R(R + |z|)

]

, (59)

where

I6 =
1

2π

∫

dk
k(kfxy)

k3
eikre−k|z| ; (60)

since
∂I6
∂ |z| = i

∂

∂r
I5 = −2

∂

∂r

fxyr

R(R + |z|) (61)

we may have access to I6 by integration (on the surface I6 ≃ fxy/r, (fxyr)r/r
3). We can see that

the displacement is of the order f/c2t r.

The above nera-field results are similar with the static displacement problems for an isotropice
elastic half-space with an internal or an external point force, up to numerical factors in the
amplitudes (the so-called Boussinesq and Mindlin problems).[23]-[34]

Transient regime. If the wavelengths are much shorter than the distances of interest we are
in the far-field regime; it may happen in this case that the wave source ceases its activity much
before the waves reach the surface of the half-space; then we are in a transient regime, where
the waves equation can be treated as in an infinite body, andthe boundary conditions may be
neglected (they are included when the waves are reflected - and refracted - by the surface).

In an infinite body the solution of thewave equation (4) can be decomposed into "longitudinal"
(l) and "transverse" (t) waves by means of the Helmholtz potentials Φ and A as

u = ul + ut , ul = gradΦ , ut = curlA (divA = 0) ; (62)
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similarly, the force can be decomposed as

F = Fl + Ft , Fl = gradφ , Ft = curlH (divH = 0) ; (63)

taking the div in F = gradφ+ curlH, we get

∆φ = divF ; (64)

taking the curl in F = gradφ+ curlH and making use of curl · curl = −∆+ grad · div we get

∆H = −curlF ; (65)

therefore, the decomposition (63) for the force is attained by solving the two Poisson equations
(64) and (65); their solutions (for vanishing boundary conditions at infinity) are

φ = − 1

4π

∫

dR
′ 1

|R−R
′|div

′

F , H =
1

4π

∫

dR
′ 1

|R−R
′|curl

′

F (66)

Introducing u given by equation (62) in the wave equation (4) we get

Φ̈− c2l∆Φ = φ , Ä− c2t∆A = H (67)

the wave equation (4) is reduced to two standard wave equations. The ul-waves (gradΦ) are
called P -waves (primary, compressional waves), while the ut-waves (curlA) are the S-waves (shear
waves).

Faulting source. For a faulting source represented by

F(R, t) = m(t)ni∂iδ(R)n , (68)

where m(t) is the seismic moment (divided by density) and n is the direction of the fault slip, we
get, from equations (66),

φ = −m(t)
4π

ninj

∫

dR
′ ∂

′

i∂
′

jδ(R
′
)

|R−R
′| =

= −m(t)
4π

(ngrad)2
∫

dr δ(R−r)
r

= −m(t)
4π

(ngrad)2 1
R

(69)

and

Hi =
m(t)

4π
εijknknl∂j∂l

1

R
. (70)

Making use of these sources we get the solutions of the wave equations (67)

Φ = − m(t)
(4πcl)2

∫

dR
′
m(t−

∣

∣

∣
R−R

′
∣

∣

∣
/cl)

|R−R
′| (ngrad

′

)2 1
R′ =

= − m(t)
(4πcl)2

(ngrad)2
∫

drm(t−r/cl)
r

1
|R−r|

=

= − mT
(4πcl)2

(ngrad)2
∫

dr · rδ(t− r/cl)
∫

dor
1

|R−r|

(71)

and

Ai =
mT

(4πct)2
εijknknl∂j∂l

∫

dr · rδ(t− r/ct)
∫

dor
1

|R− r| , (72)
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where we assumed a δ-time impulse m(t) = mTδ(t) with duration T (much shorter than the times
we measure). The angular integral can be calculated straightforwardly; we get

Φ = −mTt
4π

(ngrad)2
[

1
R
θ(R − clt) +

1
clt
θ(clt− R)

]

,

Ai =
mTt
4π

εijknknl∂j∂l
[

1
R
θ(R− ctt) +

1
ctt
θ(ctt− R)

]

.

(73)

The total displacement is readily obtained as

u = mTt
4π

(ngrad)2grad·

·
[

1
R
θ(R − ctt) +

1
ctt
θ(ctt− R)− 1

R
θ(R− clt)− 1

clt
θ(clt−R)

]

−

−mTt
4π

n(ngrad)∆
[

1
R
θ(R− ctt) +

1
ctt
θ(ctt− R)

]

.

(74)

For the near-field contribution we limit ourselves here to the part continuous in time (proportional
to functions θ); it is given by

un =
mTt

4π
(ngrad)2(grad

1

R
) [θ(R − ctt)− θ(R− clt)] (75)

(it is the double-couple result). The far-field displacement is

uf =
mT

4π

(nR)2

clR4
Rδ

′

(R− clt) +
mT

4π

nR

ctR2

[

n− (nR)R

R2

]

δ
′

(R− ctt) . (76)

We note that the far-field displacement given by equation (76) is the far-field displacement given
by the double-couple model (note that δ

′

(R − ct) = (1/c2)δ
′

(t − R/c)). In general, the double-
couple model is obtained by replacing mninj in equation (76) by the parameters m0ij . The order
of magnitude of the far-field displacement given by the above formulae is uf ≃ m/c3RT ; for a
seismic moment M = 1026dyn · cm(magnitude Mw = 7, density ρ = 5g/cm3), velocity c = 5km/s,
distance R = 100km and a duration T = 10s we get uf ≃ 1cm. The energy flux density for a scalar
wave u is S = −ρc2u̇gradu ; for the far-field displacement given here we have S ≃ ρm2/c5R2T 4;
with the same numerical values as above we get S ≃ 5× 10−3w/cm2.

Volume source. The force distribution for a volume source is F = p(t)(R/R)θ (a− R) (equation
(3)); since curlF = 0 the potential H is zero, and so is ut; we have only l-waves, given by
ül − c2l∆ul = gradφ, where ∆φ = divF; since ∆ = div · grad we may take gradφ = F, so that we
have

ul =
pT

4πc2l

∫

dR
′ δ(
(

t−
∣

∣

∣R−R
′
∣

∣

∣ /cl
)

|R−R
′|

R
′

R′ θ(a− R
′

) (77)

for a time impulse with duration T . In equation (77) we change the variable R
′

into r = R−R
′

,

ul =
pT

4πc2l

∫

dr
δ((t− r/cl)

r

R− r

|R− r|θ(a− |R− r|) , (78)

and notice that ul = ulR/R, as expected; the integral becomes

ul =
pT
2c2

l

∫

dr · rδ((t− r/cl)
∫

dθ sin θ R−r cos θ
(R2+r2−2Rr cos θ)1/2

·

·θ
[

a− (R2 + r2 − 2Rr cos θ)1/2
]

.

(79)
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Introducing u = cos θ we get the integration limits from

R2 + r2 − a2

2Rr
< u <

R2 + r2

2Rr
; (80)

making use of the graphical representation of the functions given in equation (80) we get the
integration limits (R2+ r2−a2)/2Rr < u < 1 for u, providing R−a < r < R+a. The integration
with respect to u is performed by using the change of variable R2 + r2 − 2Rru = x2; we get

ul =
pT

4c2
l
R2

∫R+a
R−a drδ(t− r/cl)· =

·
{

(R2 − r2 + 1
3
a2)a− [R2 − r2 + 1

3
(R− r)2] |R− r|

}

=

= pT
4clR2

[

1
3
a3 + (R2 − c2l t

2)a− (R2 − c2l t
2) |R− clt| − 1

3
|R− clt|3

]

(81)

for R − a < clt < R + a. This displacement has the form of a shock (similar with a function
δ
′

(t−R/cl)), which, in the (far-field) limit R, clt ≫ a has two extrema ≃ ±1
2
(pT/4cl)clta

2/R2 at
R = clt± a

2
.

Concluding remarks. The double-couple seismic source is reformulated here without resorting
to the mechanical torque representation; a volume source is also put forward, based on the pressure
exerted on the internal surface of a small spherical cavity. The elastic waves equations and the
boundary conditions are conveniently written down for anisotropic elastic half-space by using in-
plane (horizontal) Fourier transformations; it is shown that the dilatational waves act a sources
for "transverse" waves. The problem of the elastic waves in a half-space is thereby reduced to
quadratures, at least in principle. Near-field (quasi-static) approximations are solved explicitly for
the sources introduced here, including the displacement caused by a localized force acting upon
the surface. The transient regime of far-field waves is also solved for both types of sources.
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