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Abstract

The static relaxation of a semi-infinite solid is shown to imply a dilation, or an oscillatory
behaviour, of the lattice parameter, on approaching the surface.

We consider a simple model of semi-infinite solid, extending over a half-space and consisting of
parallel planes labeled by n = 1, 2, ... . The distance between the planes n and n + 1 is denoted
by a + ξn, and each plane is assumed to interact with its nearest and next-nearest neighbours
by a potential Φ, which depends only on the distance between the planes. The potential Φ is
a typical inter-atomic potential, like the Lennard-Jones potential for instance, consisting of a
strongly repulsive short-range part and an attractive long-range tail. The energy of this solid can
be written as

E =
∞∑

n=1

[Φ (a + ξn) + Φ (2a + ξn + ξn+1)] , (1)

and we ask how the lattice parameter varies with the depth from the surface, i.e. what is ξn as a
function of n.

We assume that ξn is much smaller than a and expand the energy given by (1) in powers of ξn up
to the second order; we obtain
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[Φ(a) + Φ(2a)] + ξ1
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′
(a) + 2Φ

′
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(2)

The equilibrium conditions ∂E/∂ξn = 0 give

Φ
′
(a) + Φ

′
(2a) +

[
Φ
′′
(a) + Φ

′′
(2a)

]
ξ1 + Φ

′′
(2a)ξ2 = 0 , (3)

and
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′
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′
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′′
(2a)ξn−1 +

[
Φ
′′
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′′
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′′
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(4)
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For n →∞ the lattice parameter approaches that corresponding to an infinite solid, i.e. ξn → 0;
we get from (4)

Φ
′
(a) + 2Φ

′
(2a) = 0 , (5)

an equation which gives the parameter a. Introducing the notations R = −Φ
′′
(a) /Φ

′′
(2a) and

A = −Φ
′
(2a) /Φ

′′
(2a) equation (4) can be transcribed as

ξn+1 − (R− 2)ξn + ξn−1 = 0 (6)

and the boundary condition (3) becomes

(R− 1) ξ1 − ξ2 = A . (7)

The solution to these equations is

ξn =
A

t + 1
tn , (8)

where

t =
1

2

[
R− 2−

√
R (R− 4)

]
∈ (0, 1) (9)

for R > 4, and

t =
1

2

[
R− 2 +

√
R (R− 4)

]
∈ (−1, 0) (10)

for R < 0.

The parameters R and A have always the same sign; indeed, R/A = Φ
′′
(a) /Φ

′
(2a), and from (5)

we can see that a is always to the left of the minimum of the potential Φ, while 2a is on the right;
hence, both Φ

′′
(a) and Φ

′
(2a) have positive values, and R/A > 0. The solution (8) corresponding

to (9) represents therefore a dilation of the solid near its surface, while ξn corresponding to the
second case given by (10) represents a vanishing oscillation with ξ1 > 0. As expected, there is no
contraction of the solid near its surface.

The above solutions correspond indeed to a minimum of energy. Introducing ξn given by (5) into
(2) we obtain, after some algebra,

E =
∞∑

n=1

[Φ (a) + Φ (2a)]− 1

2
Φ
′
(2a)ξ1 , (11)

and one can see that this energy is indeed smaller than the energy corresponding to the undistorted
solid (ξ1 = 0); from (11) we can also define the bulk energy

Eb = N · [Φ (a) + Φ (2a)] , (12)

where N is the number of planes, and the surface (or relaxation) energy

Es = −1

2
Φ
′
(2a)ξ1 , (13)

such that E = Eb + Es. From (11) we can also estimate the energy needed to break an infinite
solid into two halves; it is given by

∆ = − [Φ (a) + 2Φ (2a)] + 2Es . (14)
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For convenience, we give here the parameters involved in this theory for the Lennard-Jones po-
tential Φ(r) = r−12 − r−6. This potential has a minumum at r = 1.122 and a change of curvature
at r = 1.24; from (5) we obtain the bulk lattice parameter a = 1.120. In addition Φ

′′
(a) = 15,

Φ
′′
(2a) = −0.06, Φ

′
(2a) = 0.02, such that R = 233 and A = 0.33; one can see that t is extremely

small in this case (t ∼ 10−5), and ξn given by (8) vanishes extremely fast with increasing n;
therefore, a continuum approximation to the discrete equations (6) is not appropriate.

It is interesting perhaps to see what would the relaxation effect be, if observable, on the X-ray
scattering by such a semi-infinite lattice. The intensity of the scattered X-ray can be writen as

I ∼
∣∣∣∣∣
∞∑

n=1

∫
dxδ (x− na− ξn) eiqx

∣∣∣∣∣
2

, (15)

where q is the wavevector perpendicular to the surface of the lattice. Leaving aside the surface
effects we can write approximately exp (iqξn) = 1 + iqξn, since ξn is sufficiently small, and get, in
the neighbourhood of any reciprocal vector G = (2π/a) · integer,

I ∼ N · δ (q −G) + q2 f 2t2

1 + t2 − 2t cos aq
, (16)

where f = A/(t + 1). It is easy to see that the shape of the Bragg peaks is distorted in an
asymmetric way (except for the central peak G = 0), as if the lattice would undergo an apparent
”contraction”: indeed, the intensity is larger for q2 ≥ G2 than for q2 ≤ G2, in virtue of the fact
that (16) is an increasing function of q2. Provided the effect is observable, this would create the
illusion that G is slightly displaced toward larger values, i.e. the lattice parameter appears to
diminish.

Finally, it is noteworthy to discuss the relaxation of a slab of finite thickness, i.e. consisting of a
finite number of parallel planes. In this case ξn is a superposition of the n-th powers of the two
solutions t1,2 of equation (6), with t1 · t2 = 1; the constants of this superposition are determined by
the two boundary conditions, similar to (7), corresponding to the two surfaces of the slab. Apart
from these computational details, the above results are qualitatively valid in the case of a slab,
too.
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