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Abstract

The meaning of the diffusion equation is stated and various forms of its solution are given.

Suppose that a number of particles are placed at the origin x = 0 of the space at the initial moment
of the time t = 0, such that their density is n(x, t = 0) = δ(x); suppose that these particles diffuse
to the right. Here, by diffusion is meant that the particles move with the probability λ in the time
unit over the space unit. Under these circumstances we can write down the diffusion equation

n(x, t + 1)− n(x, t) = λ [n(x− 1, t)− n(x, t)] , (1)

where x and t stand for distance and, respectively, time, both measured in their own units. Since
λ depends on the space and time units the diffusion process described by the above equation is
inconsistent; the only way to give a meaning to this equation is to assume that the unit of the
time is infinitesimal, i.e. t→∞ (or t� 1), in which case λ� 1. Remark that this is not possible
for the space unit. Under this assumption n(x, t) is a slow function, and, according to the above
equation, it is also a smooth function; which means that t� x� 1.

Under these assumptions the above equation may be written as

∂n

∂t
= λ

[
−∂n

∂x
+

1

2

∂2n

∂x2
+ ...

]
. (2)

Introducing the Fourier transform

n(x, t) =
1

2π

∫
dq · n(q, t)eiqx , (3)

and restricting ourselves to the first term in the right-hand side of (2) we get n(x, t) = δ(x− λt),
i.e. a purely propagating distribution of particles, moving with the velocity λ. This function is
not a smooth one near the propagating front, so that, in order to improve the accuracy, we keep
also the second derivative in (2); in this case we obtain the well-known gaussian

n(x, t) =
1

(2πλt)1/2
e−

(x−λt)2

2λt , (4)

which has a propagating front x ∼ λt and a dispersion ∼ 2
√

λt. For t� x� 1 this is a slow and
smooth function.
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If we keep all the terms in the Taylor expansion in (2) we obtain

∂

∂t
n(q, t) = λ

(
e−iq − 1

)
n(q, t) , (5)

whence

n(x, t) =
1

2π

∫
dq · eΦ(q) , (6)

where
Φ(q) = iqx + λt

(
e−iq − 1

)
. (7)

The integral in (6) is estimated by the method of the steepest descent, the main contribution to
it coming, thereby, from the smoothest part of the function under integral. We have

Φ(q) = Φ (q0) +
1

2
(q − q0)

2 Φ
′′
(q0) , (8)

where Φ
′
(q0) = 0,

q0 = i ln (x/λt) , x 6= 0 . (9)

We obtain

n(x, t) =
1√
2πx

ex−λt−x ln(x/λt) , (10)

a function which looks completely different from the gaussian given above. However, this function
has a maximum 1/

√
2πλt placed at x = λt, and a dispersion ∆x = 2

√
λt, i.e. it is but another

representation of the gaussian. (The singularity exhibited by this function at the origin is spuri-

ous). More than this, its integral over the entire space is about
√

2/π, which is close to the unity,
showing that the steepest descent method is fairly accurate.

Actually, equation (1) has an exact solution

n(x, t) =
1

x!
t (t− 1) ... (t + 1− x) λx (1− λ)t−x = Cx

t λx (1− λ)t−x , (11)

for t ≥ x ≥ 1, n(0, t) = (1− λ)t, and zero otherwise, which looks again completely different from

the above two approximate solutions. However, apart from the fact that x = λt and (∆x)2 ≡ λt,
where the averages are taken with the binomial distribution given above, using the well-known
approximate representations for the factorial

t! ∼ tt , t� 1 ,

(12)

ln x! ∼ x ln x− x +
1

2
ln x + ln

√
2π , x� 1 ,

equation (11) becomes (10) for t� x� 1.
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