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Abstract

The equilibrium of the elastic solids requires boundary conditions which ensure the lo-
cal fixed position of their bounding surfaces, in accordance with the linear elasticity where
the (fixed) geometrical bounding surface coincides practically with the (moving, displaced)
"physical" surface; the displacement in linearly elastic solids is small and its variations in
space and time are small; these boundary conditions follow from the determined shape of
the solids. The fluid motion is more complicated, since the fluids flow and, in general, they
have not a determined shape. Consequently, the boundary conditions for the fluid motion
are of a larger variety. Two cases are identified for the motion of fluids with a "free" surface,
which may be of physical interest. First, for small variations of the displacement the "free"
surface of a fluid may flow "along itself", i.e. along directions tangential to the surface, while
its motion along the direction normal to the surface should be free of force. This observa-
tion implies boundary conditions which involve only the normal derivatives of the surface
displacement, in contrast with the boundary conditions relevant for elastic solids. Second,
for larger displacements (still satisfying the linear elasticity, i.e. with small variations) it
may appear that the moving surface should be subject to the equation of motion of the fluid;
this latter case would be relevant for the presence of the gravitational field. These boundary
conditions lead to eigemodes, which, in gravitational field are, approximately, the well-known
gravitational waves, while, in the former case (of small displacements) the eigenmodes are
lateral waves, i.e. waves parallel with the surface; the lateral waves received little attention,
though they may lead to an interesting dynamics. It is shown that the gravity waves are poor
approximations as propagating waves; they may be viewed as local disturbances produced by
external forces.

The internal motion in fluids is more complicated than in solids, since the fluids flow and have not
a determined shape. Let a fluid be at rest and in equilibrium with a constant particle concentration
n. The fluid is considered ideal, i.e. the viscosity and the thermoconductivity are absent; therefore,
its motion proceeds at constant entropy. Let u(R, t) be a displacement field in the fluid, where R

denotes the position and t is the time. For a slight variation in space and time, the displacement
u generates a change δn = −ndivu in concentration, which satisfies approximately the continuity
equation ∂δn/∂t + div(nv) = 0, where v = du/dt ≃ ∂u/∂t is the particle velocity. Since the
variations of the disturbances are assumed small, the transport velocity may be neglected, i.e.

du/dt = ∂u/∂t + (vgrad)u is approximated by u̇ = ∂u/∂t.

All the forces which act in a fluid derive from the gradient of a pressure p (there are not shear
forces in a fluid); it follows that the equation of motion of the field u is

ρü = −gradp+ e , (1)
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where ρ is the mass density and e is an external field density (also derived from a pressure).
Equation (1) is an approximate form of the Euler equation (Euler equation being the Navier-
Stokes equation without viscosity). The displacement field offers the opportunity to describe the
motion of the fluids by a reduced form of the Euler equation, corresponding to small variations of
the displacement field and small velocites. In equation (1) the pressure p varies slowly in space
and time and the external field e is small.

The change in concentration generates a change in pressure δp = (∂p/∂n)sδn, or δp = V (∂p/∂V )sdivu,
by using the particle volume V = 1/n, where β = −(1/V (∂V/∂p)s is the compresibility at constant
entropy s; we get δp = −(1/β)divu and equation (1) becomes

ρü =
1

β
grad · divu+ e , (2)

or
ü− c2grad · divu = e/ρ , (3)

where c = 1/
√
ρβ is the sound velocity. Equation (3) is a reduced form of the Navier-Cauchy

equation of the elastic motion of the solids, corresponding only to one Lame elastic modulus
λ = 1/β. The reduced stress tensor is

σij = ρc2ukkδij = λdivuδij = −δpδij , (4)

and the reduced Navier-Cauchy equation of motion is

ρüi = ∂jσij + ei , (5)

which is equation (3).

Let us integrate equation (5) over the volume V of the fluid bounded by the surface S:

∫
V
dvρüi =

∫
V
dv(∂jσij + ei) ; (6)

formally, the integral on the right in equation (6) can be tranformed as

∫
V
dv(∂jσij + ei) =

∫
S
dSj(σij + psδij) =

∫
S
dSi(ρc

2divu+ pS) , (7)

where pS is the external pressure on the surface, such that e |S= gradpS (more rigurously, e |S=
gradp |S). It follows that

fS = ρc2divu |S +pS , (8)

could be taken as the net force (pressure) acting perpendicular to the unit area of the surface at
every point of the surface. Since the solids have a fixed shape, the condition of equilibrium, i.e.

the condition of having a fixed shape at every point (of the surface), would be

ρc2divu |S= −pS ; (9)

indeed, this is the particular form of the well-known boundary condition[1]

njσij |S= −Pi (10)

of elastic solids with only compressional stress, where n is the unit vector normal to the surface,
Pi are the components of the external surface forces (acting inwards), i.e. Pi = pSδin, n being the
coordinate along the direction normal to the surface.
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For fluids the situation is different. In general, the fluids have not a fixed shape, such that it may
appear that we must distinguish between the "geometrical" surface of the fluid and its "physical"
surface, i.e. the displaced surface. If the surface displacement is large, large variations may
appear, which may cast doubts about the validity of the linear elasticity assumed here. Usually,
the fluids are confined to containers, which require special boundary conditions at the walls; e.g.,
the vanishing of the displacement component normal to the wall. Various other situations may
require various other boundary conditions.

Let us consider a fluid with a "free" surface S and extending indefinitely along all other directions;
we assume that the motion of the fluid is vanishing at infinity (i.e. the displacement field and all
its derivatives are vanishing at infinity). Let us write equation (3) as

ρüi = ρc2∂i∂juj + ei (11)

and integrate it over the volume V :

∫
V dvρüi =

∫
V dv(ρc

2∂i∂juj + ei) =

=
∫
S dSj(ρc

2∂iuj + pSδij) ;
(12)

it is reasonable to assume that the fluid surface may move (slide) "freely" along the tangential
directions, but, for small displacements, it is fixed along the normal direction (i.e., the fluid
preserves its shape). Therefore, the surface force carrying the labels i, j = n in equation (12)
should be vanishing; this leads to the boundary condition

ρc2∂nun |S= −pS . (13)

This boundary condition looks different from the boundary condition given by equation (9). The
difference originates in the integral

Ii =
∫
V
dv∂jσij (14)

which can be written in two different ways. First, we have

Ii =
∫
V
dv∂jσij = ρc2

∫
dSidivu ; (15)

second, we have

Ii =
∫
V
dv∂jσij = ρc2

∫
dSj∂iuj . (16)

In fact, these two integrals are equal, if we realize that, for fluids, whose surface may flow "along
itself", the surface integrals of derivatives along directions tangential to the surface are vanishing.
Indeed, in equation (15) we are left with

Ii = ρc2
∫
dSidivu = ρc2

∫
dSi∂juj = ρc2

∫
dS∂nun (17)

and from equation (16) we get the same result

Ii = ρc2
∫
dSj∂iuj = ρc2

∫
dS∂nun ; (18)

we can see that the boundary condition for a "fixed" fluid surface should be indeed equation (13);
the condition given by equation (9) is misleading for fluids, since it incorporates spurios terms
which give a vanishing contribution.
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It follows that for a fluid bounded by a surface "at rest" the equation of motion

ü− c2grad · divu = e/ρ (19)

(equation (3)) must be solved with the boundary condition

ρc2∂nun |S= −pS (20)

(equation (13)).

It is worth noting that the boundary condition given by equation (20) is relevant for a surface "at
rest", i.e. a surface not acted by normal forces (it may suffer static deformations); it may also
flow "along itself". In this case the displacement should be small, with small variations, such that
the (moving) "physical surface" coincides practically with the (fixed) geometrical surface and the
linear elasticity may be used. It may appear that for large deformations the boundary conditions
given by equation (20) could not be used anymore, and we we should resort directly to the initial
Euler equation (1). Let us take the limit of this equation to the surface S. On the surface S the
internal stress may be set equal to zero; there exists an external pressure pS which gives a force
gradpS on the surface, or, more rigorously, gradp |S, with the only non-vanishing n-component
∂p/∂n |S (we still admit the linear elasticity); in order to have a moving surface we may admit
that an additional force may come from the gravitational field, which gives an n-component of
the force equal to −ρg∂un/∂n|S , where g is the gravitational acceleration; the coordinate n is
the coordinate z along the direction perpendicular to the surface; we get from equation (1) the
boundary condition

ρün |S=
∂p

∂n
|S −ρg∂un

∂n
|S , (21)

or

ρüz |S=
∂p

∂z
|S −ρg∂uz

∂z
|S , (22)

This would be the boundary condition for a fluid with a surface set in motion by the gravitational
field; in order this condition be satisfied we should have, of course, ρgun |S≫ ps. It is also worth
noting that, for this case of a moving surface (with large displacement), the condition of small
variations of the displacement both in space and time must be preserved.

We illustrate the difference brought about by the boundary conditions for the motion of a fluid
occupying a half-space z < 0, bounded by a surface z = 0. Equation (19) is solved conveniently
by introducing the potentials Φ and ϕ, such that u = gradΦ and e = gradϕ (it is assumed that
the gravitational field brings no contribution to the body forces which determine the motion).
Equation (19) becomes

Φ̈− c2∆Φ = ϕ/ρ ; (23)

using Fourier transforms with respect to both the time and the coordinates parallel with the plane
surface, this equation can be written as

d2Φ

dz2
+ κ2Φ = − ϕ

ρc2
, (24)

where κ2 = ω2/c2−k2; ω is the frequency, k is the in-plane wavevector (coordinate r in R = (r, z))
and z is the coordinate along the direction perpendicular to the plane surface. The rigid-surface
boundary condition given by equation (20) is

Φ(2) = − pS
ρc2

(25)
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and the moving-surface boundary condition given by equation (21) is

ω2Φ(0) = −pS
ρ

+ gΦ(1) , (26)

where Φ(0) = Φ |z=0, Φ
(1) = dΦ/dz |z=0 and Φ(2) = d2Φ/dz2 |z=0. The body-force potential ϕ may

be viewed as vanishing on the surface (ϕ(0) = 0); then, from equation (24) we get Φ(2) = −κ2Φ(0)

and Φ(1) = −iκΦ(0); the boundary conditions given by equations (25) and (26) become

κ2Φ(0) = pS
ρc2

,

(ω2 + iκg)Φ(0) = −pS
ρ
.

(27)

We can see easily that the first equation (27) (rigid surface) yields eigenmodes with frequency
ω = ck (κ2 = 0); these are lateral waves which move tangential to the surface; while the second
equation (27) (moving surface) yields eigemodes with frequency ω =

√
gk for k ≫ g/c2; these are

gravitational waves; since g/c2 ≃ 10−5m (c ≃ 103m/s), we may admit that these gravitational
waves exist (for not very short wavelength). While the gravitational waves are known since long,
the lateral waves are receiving little attention; they can be identified both in elastic solids and
fluids.

These eigenmodes, in the presence of an external pressure ps (excited by an external pressure),
may lead to a special, particular, new type of motion in fluids (see jtp251).

Unfortunately, the derivation given above for the gravity waves is inconsistent. Indeed, the ap-
proximation κ ≃ ik in the second equation (27) (which gives a damped wave ∼ ekz) implies
κ2 + k2 = 0, or ω = 0 (in contrast with ω =

√
gk) and ∆Φ = 0 (or divu = 0), which means

the absence of the internal stress (given by c2grad · divu). A displacement u implies always an
internal stress associated with a variation of the pressure, such that the internal stress may not
be neglected, even in the presence of the gravitational field. Moreover, the condition k ≫ g/c2

required by the approximation described above amounts to ρc2divu ≫ ρguz, through c2/λ ≫ g,
which indicates that the internal stress gives higher effects than the gravitational field, even for
a small displacement u. It follows that the effect of the gravitational field is small, it may be
neglected, and the “fixed"-surface boundary condition ρc2∂nun |S= −pS is appropriate. On the
other hand, taking the limit of the equation of motion to the bounding surface is not warranted,
since external forces occur on the surface, which should compensate the internal forces; it makes
the term ρü invalid on the surface.

The disturbance produced by the gravitational field can be included in the equation of motion for
uz through

ρüz − ρc2∂zdivu+ ρg∂zuz = ez , (28)

or, leaving aside the in-plane contributions,

üz − c2u
′′

z + gu
′

z = ez/ρ , (29)

where we can see the occurrence of a small friction-like term, which may be eliminated by uz ∼
egz/2c

2

.

There exist special cases where we may neglect the internal stress and keep only the gravitational
field. For instance, in a shallow canal where all the fluid is displaced along the z-coordinate, we
may use the approximaton gu

′

z ≃ −hu′′

z , where h is the depth of the canal; we get the canal waves
propagating with velocity v =

√
gh. Similarly, for a disturbance produced by external forces, as for
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tidal waves, we may set uz ∼ ekz, which gives oscillations (not waves!) with frequency ω =
√
gk;

k remaining undetermined. In general, the equation üz + gu
′

z = ez is a diffusion equation in time.
In all cases, when necessary, the "fixed"-surface boundary condition is appropriated. If we set
divu = 0, then we have the equations ρüx,y = ex,y, ρüz + ρgu

′

z = ez; for e = 0 and ω2 = gk we get
uz 6= 0 and ux,y = 0, which do not satisfy the condition divu = 0.

Another proof of the above point is provided by the equations of motion written as ρ∂tvx = ρ∂tvy =

0, ρ∂tvz = −∂zp; using the velocity potential v = gradψ, we get ∂x
˙ψ = ∂yψ̇ = 0 and ρψ̇ = −p

(this equation is an integral of the equations of motion); in addition, the equation of continuity
requires divv = ∆ψ = 0, hence ∆p = 0; if we write p = ρguz, we should have ∆uz = 0, or

∆vz = 0, while from equation ρ ˙ψ̇ = −p = −ρguz we get ψ̈ = −g∂zψ; hence we may have ω2 = gk

for ψ ∼ ekz, but from ∂x
˙

ψ = ∂yψ̇ = 0 it follows that ψ does not depend on x and y; therefore, the
condition ∆ψ = 0 reduces to ∂2zψ = 0, or k = 0.
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