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Abstract

Vibrations of an ideal fluid are considered for a boundary condition which requires the
equlibrium of the free surface (free of forces) along its normal; the fluid surface may flow
along itself, withut physical consequences. The vibrations of an ideal fluid confined to a
half-space are computed for point volume forces or surface pressure, either oscillating or time
impulses. Specific eigenmodes are identified for the half-space fluid, which are lateral waves
propagating along directions parallel with the surface. The contribution of these eigenmodes
is highlighted, especially for a point time-impulse pressure, where cylindrical waves with a
singular wavefront are produced. Similar eigenmodes (lateral waves) are identified for two
superposed fluids, each occupying a half-space and separated by a plane membrane (interface).
A fluid confined to a rectangular box with two plane-parallel surfaces is also considered, with
a finite thickness and a solid (rigid) surface at the bottom, which exhibits discrete vibration
modes.

Introduction. The internal motion of the ideal flluids is described by the reduced Euler equation

ü− c2grad · divu = e , (1)

where u is the displacement field exhibiting small variations in space and time, c is the (adiabatic)
sound velocity and e is an external field (per unit mass). The equation originates in the small
variations δn = −ndivu of the particle concentration n, which generate small variations δp =
(∂p/∂n)δn = −n(∂p/∂n)divu, or δp = −(1/β)divu, where β is the (adiabatic) compressibility;
consequently, an internal stress −gradδp arises in the equation of motion ρü = −gradδp, where ρ is
the mass density, which leads to equation (1) with the sound velocity c = 1/

√
ρβ. Equation (1) is a

reduced form of the Navier-Stokes equation of fluid motion (Euler equation, without viscosity and
for small velocities) and the Navier-Cauchy equation of elastic motion of homogeneous isotropic
solids with only one Lame elastic modulus λ = 1/β. It is worth noting the pression disturbance
δp = −ρc2divu.

The external field e derives from a potential ϕ, e = gradϕ, such that the displacement u can be
written as deriving from a potential Φ, u = gradΦ; equation (1) becomes the wave equation

Φ̈− c2∆Φ = ϕ (2)

(or ü − c2∆u = e). For ϕ = Tmδ(t)δ(R), where m is a torque (moment of force) divided by
density and T is the short duration of the time-impulse the solution of equation (2) in the infinite
space (Green function) is given by the retarded Kirchhoff spherical-shell wave

Φ =
Tm

4πc2

∫

dR
′
δ(t−

∣

∣

∣R−R
′

∣

∣

∣ /c)

|R−R
′| δ(R

′

) =
Tm

4πc

δ(R− ct)

R
. (3)
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The propagating solutions are obtained by means of this Green function for any distribution of
external fields.

Let us consider the vibrations of a fluid confined to a volume V and bounded by the surface S;
they are given by equation (2) with the boundary conditions

ρc2∂fuf |S= ρc2∂2
fΦ |S= −ps , (4)

where f denotes the coordinate normal to the surface S (uf is the component of the displacement
normal to the surface) and ps is the external pressure (acting inwards). Indeed, if we integrate
equation (1) over the volume V we get

∫

V dvü =
∫

V dv(c2grad · divu+ 1
ρ
gradp) =

=
∫

S dS(c
2divu+ 1

ρ
ps) ;

(5)

we can see that the volume integral of ü implies the surface integration over surface normal to ü,
which means that u is free to move along directions tangential to the surface; consequently, in divu
in the surface integral it remains only the normal derivative ∂fuf ; the condition of equilibrium
requires the vanishing of the total force, i.e. equation (4). It is worth noting that this boundary
condition holds for a free surface of the fluid with a small displacement (surface at rest); this
condition is similar with the condition for solids with determined (fixed) shape, but the boundary
condition for solids njσij |S= −Pi differs from equation (4) in that it implies the whole stress
tensor σij = 2ρc2tuij + ρ(c2l − 2c2t )divuδij , where uij = (1/2)(∂iuj + ∂jui) is the strain tensor, cl,t
are the velocities of the elastic waves in solids, n is the unit vector normal to the surface and P is
the external force acting inwards per unit area of the surface; for ct = 0 (and cl = c) this condition
would imply ρc2divu = −ps (and Pα = 0, where α = 1, 2 labels the two tangential coordinates),
which differs from equation (4); the difference arises from the fact that the solid surfaces cannot
slide along themselves.

Half-space. Let us consider a fluid occupying the half-space z < 0 and bounded by the free plane
surface z = 0. By using Fourier transforms with respect to the time and the coordinates parallel
with the surface, equation (2) and the boundary condition (4) become

d2Φ

dz2
+ κ2Φ = − ϕ

c2
, Φ(2) = − ps

ρc2
, (6)

where κ2 = ω2/c2 − k2 and Φ(2) = d2Φ/dz2 |z=0, ω being the frequency and k being the in-plane
wavevector. In order to acount conveniently for the boundary condition we multiply equation (6)
by θ(−z) and absorb the step function under the derivative sign; we get

d2Φ

dz2
+ κ2Φ = −ϕ

c2
− Φ(1)δ(z)− Φ(0)δ

′

(z) , (7)

where Φ(1) = dΦ/dz |z=0 and Φ(0) = Φz=0; we limit ourselves to the restriction of the solution Φ
to the half-space. Equation (7) is solved by using the Green function eiκ|z|/2iκ; the solution is

Φ = − 1

2iκc2

∫ 0

−∞
dz

′

(

eiκ|z−z
′

| − eiκ|z+z
′

|
)

ϕ(z
′

) + Φ(0)eiκ|z| (8)

and

Φ(1) = − 1

c2

∫ 0

−∞
dz

′

eiκ|z
′

|ϕ(z
′

)− iκΦ(0) ; (9)
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the boundary condition becomes

κ2Φ(0) = −ϕ(0)/c2 + ps/ρc
2 , (10)

where ϕ(0) = ϕ |z=0 (from equation (7) Φ2) = −κ2Φ(0) − ϕ(0)/c2); the solution given by equation
(8) reads

Φ = − 1

2iκc2

∫ 0

−∞
dz

′

(

eiκ|z−z
′

| − eiκ|z+z
′

|
)

ϕ(z
′

)− ϕ(0)

c2κ2
eiκ|z| +

ps
ρc2κ2

eiκ|z| . (11)

We can see the occurrence of the eigenmodes ω2 = c2k2 from κ2 = 0 in equation (10), which are
lateral waves of the form e−ickteikr, where r is the in-plane position vector.

Let us consider a few particular cases. First, let us take a point source

ϕ = m cosΩtδ(r)δ(z − z0) (12)

placed at depth z0 (z0 < 0 ) and oscillating with frequency Ω; its Fourier transform is

ϕ = πm[δ(ω − Ω) + δ(ω + Ω)]δ(z − z0) ; (13)

for ps = 0 the solution given by equation (11) is

Φ = − πm

2iκc2

(

eiκ|z−z0| − eiκ|z+z0|
)

[δ(ω − Ω) + δ(ω + Ω)] (14)

(ϕ(0) = 0). Taking the reverse Fourier transforms and using the Sommerfeld-Weyl integral

i

2π

∫

dk
eikr

κ
eiκ|z| =

eiΩR/c

R
, R =

√
r2 + z2 , (15)

we get

Φ =
m

4πc2

[

cosΩ(t− R1/c)

R1

− cosΩ(t−R2/c)

R2

]

, (16)

where R1,2 =
√

r2 + (z ∓ z0)2; these are monochromatic spherical waves propagating with velocity
c, generated by the monochromatic point source, as expected. Since the phases of the two waves
are different and depend on position, the superposition of the two waves is in fact a vibration.
The displacement at the surface is given by u

(0)
r

= 0 and

u(0)
z =

m | z0 | Ω
2πc3R2

0

[

sinΩ(t−R0/c)−
c

ΩR0
cosΩ(t− R0/c)

]

, (17)

where R0 =
√

r2 + z20 .

Let us assume a time-impulse wave source

ϕ = Tmδ(t)δ(r)δ(z − z0) (18)

with the Fourier transform ϕ = Tmδ(z−z0) (and ps = 0); from equation (11) we get the potential

Φ =
Tm

4πc

[

δ(R1 − ct)

R1
− δ(R2 − ct)

R2

]

; (19)
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the surface displacement is u
(0)
r

= 0 and

u(0)
z =

Tm | z0 |
2πcR2

0

[

δ
′

(R0 − ct)− 1

R0
δ(R0 − ct)

]

; (20)

we can see in equation (19) the image source placed at r = 0, z = −z0, which generates the reflected
waves. We note that the boundary condition, though formally satisfied, is in fact meaningless,
since the solution is zero outside the support of the functions δ.

The solution given by equation (11) includes a surface potential

Φs =
ps

ρc2κ2
eiκ|z| ; (21)

leaving aside the body forces (ϕ = 0), we consider a uniform, oscillating external pressure ps =
p cosΩt, with the Fourier transform ps = πp[δ(ω − Ω) + δ(ω + Ω)]; it gives a surface potential

Φs =
p

4π2ρΩ2
cosΩ(t− | z | /c) ; (22)

it is a superposition of two identical travelling waves, propagating in opposite directions. For a
uniform temporal impulse ps = Tpδ(t) we get

Φs =
Tp

4π2ρc
(ct− | z |)θ(ct− | z |) (23)

and the displacement uz = (Tp/4π2ρc)θ(ct− | z |).
Let us consider an oscillating external pressure localized over the small distance d near the origin,
given by

ps = d2pδ(r) cosΩt , (24)

with the Fourier transform
ps = πpd2[δ(ω − Ω) + δ(ω + Ω)] ; (25)

it gives rise to a surface potential

Φs =
pd2

8π2ρ

∫

dkeikr
∫

dω
eiκ|z|e−iωt

ω2 − c2k2
[δ(ω − Ω) + δ(ω + Ω)] . (26)

It is easy to see that the contribution of the δ-functions is zero; it remains only the contribution
of the eigenmodes ω = ±ck (lateral waves); the integration should be performed over the lower
half-plane in order to ensure the causality (Φs = 0 for t < 0); the result is

Φs = − pd2

2ρc2
J0(Ωr/c) sinΩt , (27)

which are in-plane vibrations governed by the Bessel function of zeroth order. The displacement
does not depend on z. It is worth noting that the boundary condition Φ(2) = −ps/ρc

2 is not
satisfied at the position of the singular external pressure r = 0, as expected.

Now, let us assume an external pressure of the form

ps = Tpd2δ(r)δ(t) ; (28)

it gives a surface potential

Φs = −Tpd2

2πρc

1√
c2t2 − r2

θ(ct− r) , (29)
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where we use the integrals[1]

∫ ∞

0
dxJ0(x) cosλx =

1√
1− λ2

θ(1− λ) ,
∫ ∞

0
dxJ0(x) sinλx =

1√
λ2 − 1

θ(λ− 1) . (30)

The waves corresponding to the surface potential given by equation (29) are cylindrical waves
with a singular wavefront at r = ct.

Two superposed fluids. Let us consider two superposed fluids, one, denoted by 1, occupying
the half-space z < 0, another, denoted by 2, occupying the half-space z > 0, separated by a thin,
plane membrane at z = 0. All the quantities pertaining to the fluid 1 carry the label 1, all the
quantities pertaining to the fluid 2 carry the label 2. The potential Φ1is given by equation (8),
while the potential Φ2 is given by

Φ2 = Φ
(0)
2 eiκ2z ; (31)

the wave source is placed in fluid 1. The boundary conditions ensure the continuity of the nornal
displacement at the interface z = 0,

u
(0)
1z = u

(0)
2z , (32)

and the equilibrium of the interface,

ρ1c
2
1Φ

(2)
1 + ρ2c

2
2Φ

(2)
2 = −ps ; (33)

these boundary conditions lead to

κ1Φ
(0)
1 + κ2Φ

(0)
2 = − 1

ic21

∫ 0

−∞
dz

′

eiκ1|z
′

|ϕ(z
′

) (34)

and
λ1κ

2
1Φ

(0)
1 + λ2κ

2
2Φ

(0)
2 = ps (35)

(where we use ρc2 = λ). The solutions of the equations (34) and (35) are

Φ
(0)
1 =

1

κ1(λ1κ1 − λ2κ2)

[

λ2κ2

ic21

∫ 0

−∞
dz

′

eiκ1|z
′

|ϕ(z
′

) + ps

]

(36)

and

Φ
(0)
2 = − 1

κ2(λ1κ1 − λ2κ2)

[

λ2κ2

ic21

∫ 0

−∞
dz

′

eiκ1|z
′

|ϕ(z
′

) + ps

]

− 1

iκ2c
2
1

∫ 0

−∞
dz

′

eiκ1|z
′

|ϕ(z
′

) . (37)

The zeroes ω = ±ω0 of the denominator λ1κ1 − λ2κ2, where

ω0 =

√

√

√

√

λ2
1 − λ2

2

ρ1λ1 − ρ2λ2
k , (38)

give the eigenmodes of the two fluids (lateral waves), for λ1 > λ2, ρ1λ1 > ρ2λ2 and ρ1λ2 < ρ2λ1

(or for interchanged labels). Their contribution is governed by the derivative

d = (λ1κ1 − λ2κ2)
′ |ω0

= (λ2
1 − λ2

2)

√

√

√

√

λ2
1 − λ2

2

λ!λ2(ρ2λ1 − ρ1λ2)
, (39)

which gives λ1κ1 − λ2κ2 ≃ d(ω − ω0) + ... and λ1κ1 − λ2κ2 ≃ −d(ω + ω0) + ....
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Plane-parallel surfaces. Let us consider a fluid confined in a volume with plane-parallel surfaces,
with thickness d, bounded by two thin membranes placed at z = −d and z = 0. If we multiply
the wave equation (6) by θ(−z)θ(z + d) and absorb the θ-functions in the derivative, equation (6)
becomes

Φ
′′

+ κ2Φ = −ϕ/c2 − Φ
(0)
0 δ

′

(z) + Φ
(0)
−dδ

′

(z + d)− Φ
(1)
0 δ(z) + Φ

(1)
−dδ(z + d) ; (40)

the solution can be written by using the Green function eiκ|z|/2iκ, and the parameters Φ
(1)
0 and

Φ
(1)
−d can be eliminated in favour of Φ

(0)
0 and Φ

(0)
−d; they are given by

Φ
(1)
0 = − 1

1−x2

1
c2

∫ 0
−d dz

′

e−iκz
′

ϕ(z
′

) + x2

1−x2

1
c2

∫ 0
−d dz

′

eiκz
′

ϕ(z
′

)−

−1+x2

1−x2 iκΦ
(0)
0 + x

1−x22iκΦ
(0)
−d ,

Φ
(1)
−d = − x

1−x2

1
c2

∫ 0
−d dz

′

e−iκz
′

ϕ(z
′

) + x
1−x2

1
c2

∫ 0
−d dz

′

eiκz
′

ϕ(z
′

)−

− x
1−x22iκΦ

(0)
0 + 1+x2

1−x2 iκΦ
(0)
−d ,

(41)

where x = eiκd. Introducing these parameters in the expression of the potential Φ, we get

Φ = − 1
2iκc2

∫ 0
−d dz

′

(

eiκ|z−z
′

| − eiκ|z+z
′

|

)

ϕ(z
′

)+

+ x2

1−x2

1
2iκc2

(eiκz − e−iκz)
∫ 0
−d dz

′

(

eiκz
′

− e−iκz
′

)

ϕ(z
′

)−

− 1
1−x2Φ

(0)
0 (x2eiκz − e−iκz) + x

1−x2Φ
(0)
−d (e

iκz − e−iκz) .

(42)

The boundary conditions required by the equilibrium of the two free surfaces (free of forces) are
given by

Φ
(0)
0 = −ϕ

(0)
0 /c2κ2 + p0/ρc

2κ2 ,

Φ
(0)
−d = −ϕ

(0)
−d/c

2κ2 + p−d/ρc
2κ2

(43)

(equation (6)); these boundary conditions give the parameters Φ
(0)
0,−d, which complete the solution

of the problem. We can see that the eingenmodes ω = ±ck (lateral waves, κ2 = 0) occur for
discrete values kn = πn/d, n any integer, given by x2 = 1.

A realistic boundary condition would require the vanishing of the normal component of the dis-
placement for z = −d (a rigid lower surface, where the fluid is in contact with a solid); this
condition reads u(0)

z (z = −d) = dΦ/dz |z=−d= 0; from equation (42), leaving aside the body forces
(ϕ = 0), it leads to

Φ
(0)
−d =

2x

1− x2
Φ

(0)
0 (44)

and

Φ =
1

(1− x2)2

[

x2(1 + x2)eiκz + (1− 3x2)e−iκz
]

Φ
(0)
0 , (45)

where Φ
(0)
0 = p0/ρc

2κ2 (equations (43)). For p0 = Tpδ(t)δ(r) we get

Φ = − Tp

4π2ρc

∫

dkeikr
sin ckt

k

1

1− x2
(46)
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and

Φ = − Tp

8ρcd

∑

n

J0(πrn/d) sin(πctn/d) ; (47)

we can see the contribution of the poles k = kn placed on the real axis (slightly below).

Concluding remarks. Vibrations of an ideal fluid bounded by a free surface are analyzed,
by using the boundary condition which relates the external pressure to the normal derivative
of the normal component of the displacement. Various cases are considered for the external
pressure, including uniform or point pressure, with an oscillating or impulse time dependence.
Vibrations are computed for a half-space fluid, two superposed fluids and a fluid with finite
thickness, comprised between two plane-parallel surfaces, the lower surface being rigid (with a
vanishing normal component of the displacement as boundary condition). Special eigenmodes
are identified in theses cases, which are lateral waves propagating along directions parallel with
the plane surfaces, not depending on the normal coordinate. For a point, time-impulse external
pressure these eigenmodes may generate cylindrical waves with singular wavefronts.
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