
1

Journal of Theoretical Physics

Founded and Edited by M. Apostol 26 (1997)

ISSN 1453-4428

On the critical temperature of the Ising ferromagnets
M. Apostol

Department of Theoretical Physics, Institute of Atomic Physics,
Magurele-Bucharest Mg-6, POBox Mg-35, Romania

email: apoma@theory.nipne.ro

Abstract

The critical temperature of the two-dimensional Ising ferromagnet is computed by a
simple method, which can be extended to various others lattice models, including the Ising
ferromagnet in three dimensions.

The well-known Ising ferromagnet in two dimensions consists of a regular square lattice of two-
valued spin variables µi = ±1, i = 1, ...N , whose energy is given by

E = −1

2
J

∑
〈ik〉

µiµk −mH
∑

i

µi ; (1)

in eq.(1) J is a coupling constant, 〈ik〉 are the nearest-neighbours, m is the magnetic moment of
each spin and H is the applied magnetic field. The problem is to compute the partition function

Z =
∑

{µi=±1}
exp

1

2
K

∑
〈ik〉

µiµk + C
∑

i

µi

 , (2)

where the summation extends over all spin configurations, K = J/T , C = mH/T , T being the
temperature.

Kramers and Wannier[1] succeeded to exactly locate the critical temperature at Kc = 0.44, and to
show that the specific heat is singular at the critical point, by using a particular matricial method
which may be termed the V-matrix technique. The location of the critical temperature is attained
by using a so-called duality argument, which is neither transparent, nor practical. Subsequently,
Onsager[2] gave the exact solution for the partition function in vanishing magnetic field, by a
quaternion algebra, rotation matrices have successfuly been used to the same effect,[3] and, finally,
the magnetization (announced by Onsager) has been reported by Yang.[4] All these techniques are
exceedingly laborious, and, worth-remarking, they all contain, more or less implicitly, the duality
argument. Various simplifications have been attempted during the time[5], of not much avail,
so that it might be preferrable sometime to resort to approximate methods.[6] Such a method
is presented here, which gives the critical temperature of the two-dimensional Ising ferromagnet
surprisingly accurate (Kc = 0.44), and which can be extended to other lattice models; for instance,
the method predicts a critical point Kc = 0.26 for the (simple cubic) Ising ferromagnet in three
dimensions.
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The method is based on the transfer matrix introduced by Kramers and Wannier[1], following,
it seems, a suggestion of Montroll.[7] We consider a strip of N2 chains, each with N1 spins, such
as N = N1N2. Suppose that at one end the strip has a row of spins µ′ = (µ′

1, µ
′
2, ...µ

′
N1

), and
we connect at this end another raw of spins µ = (µ1, µ2, ...µN1). For large N2 and with cyclic
boundary conditions along each chain (µN1+1 = µ1) we get from eq.(2)

Z(µ) = exp [K (µ1µ2 + ...µN1µ1) + C (µ1 + ...µN1)] ·

·∑µ′ exp
[
K

(
µ1µ

′
1 + ...µN1µ

′
N1

)]
· Z(µ′) ,

(3)

which, introducing the scalar product, can be written symbolically as

Z(µ) = eK(µ,Dµ)+C(1,µ) ·
∑
µ′

eK(µ,µ′) · Z(µ′) , (4)

or
Z(µ) = eε(µ) ·

∑
µ′

eK(µ,µ′) · Z(µ′) , (5)

where
ε (µ) = K (µ, Dµ) + C(1, µ) (6)

is the one-chain energy divided by temperature, D is a shift operator, Dµ = (µ2, µ3, ...µN1 , µ1),
and 1 = (1, 1, ...1). Introducing Z∗(µ) = exp [−ε(µ)/2] Z(µ) eq.(5) becomes

Z∗(µ) =
∑
µ′

T (µ, µ′) Z (µ′) , (7)

where the transfer matrix

T (µ, µ′) = (µ, Tµ′) = eK(µ,µ′)+ 1
2
ε(µ)+ 1

2
ε(µ′) (8)

has been introduced. With cyclic boundary conditions across the strip we get from eq.(7) the
partition function

Z =
∑

µµ1...µN2−1
T (µ, µ1) T (µ1, µ2) ...T (µN2−1, µ) =

= tr
(
TN2

)
= λN2

1 + λN2
2 + ...,

(9)

where λ’s are the eigenvalues of the transfer matrix T . We note that T is a 2N1 × 2N1 matrix.

As it is well-known, if the matrix T is non-singular and has a maximum eigenvalue λmax ≡ λ then
the partition function is given by

Z ' λN2 . (10)

The maximum eigenvalue of a large matrix like the matrix T is given by

λ = (µ0, Tµ0) , (11)

where µ0 is the positive-valued vector of highest symmetry.[8] In our case µ0 = (1, 1, ...1), such
that

λ = (1, T1) = e(2K+C)N1 (12)

and
Z = e(2K+C)N . (13)
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From eq.(13) we get the magnetization

M = m
∂ ln Z

∂C
= mN (14)

and the energy

E = −MH − J
∂ ln Z

∂K
= −mNH − 2JN , (15)

which show that Z = exp [(2K + C) N ] = Zord is the partition function of the ordered, ferromag-
netic state.

Slightly above the critical temperature the spins are all disordered, such as the energies of all
configurations in eq.(2) may be replaced by zero (as if the temperature goes to infinite). The
transfer matrix T has then all the elements equal to unity, it is a singular matrix, and all its
eigenvalue vanish except one which is λ = 2N1 . We have therefore

Zdis = 2N . (16)

In order to get the critical temperature we may equate (in vanishing magnetic field C = 0)
Zord = Zdis obtained above, leading to Kc = ln 2/2 = 0.35. However, we can improve upon the
partition function of the disordered state by expanding the expnentials in eq.(2) for small energies:

Zdis =
∑

{µi=±1}

[
1 + 1

2
K

∑
〈ik〉 µiµk + 1

8
K2

(∑
〈ik〉 µiµk

)2
+ ...

]
=

= 2N

[
1 + 1

8
K2

〈(∑
〈ik〉 µiµk

)2
〉

+ ...
]

== 2N (1 + NK2...) ,

(17)

which is nothing else but the high-temperature expansion.[9] The critical temperature is now given
by

e2K = 2
(
1 + K2

)
, (18)

which yields a surprisingly accurate result Kc = 0.43.[10]

Replacing the chains by planes the transfer matrix method can obviously be extended to the
three-dimensional Ising ferromagnet. We obtain in this case (for a simple cubic lattice) Zord =
exp [(3K + C) N ], whence the critical temperature would be given in the first approximation by

Kc = ln 2/3 = 0.23. However, the low=energy series expansion gives Zdis = 2N
(
1 + 3

2
NK2 + ...

)
,

so that the critical temperature is given by

e3K = 2
(
1 +

3

2
K2

)
, (19)

i.e. Kc = 0.26.

It is a straightforward matter to see that the method can also be applied to various other versions
of the Ising ferromagnet, as well as to some others lattice models for computing their critical
temperature.
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