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Abstract

A regularization (calibration) procedure is presented for removing unphysical terms in the
potentials used in solving the Stokes problem and its tensorial generalization in the theory of
the elastic waves. The solution free of such terms is provided for these problems.
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As it is well known the equation of the elastic waves in a homogeneous isotropic body is

ü− c2t∆u− (c2l − c2t )grad · divu = f , (1)

where u is the displacement vector, cl,t are the wave velocities and f is the force per unit mass.[1] For
the Stokes problem[2] the force density is f = TFδ(t)δ(R), where T is a measure of the duration of
the force source, F is the force divided by density, R is the position vector, t denotes the time and
δ is the Dirac function. Forces which depend on δ(R) or the derivatives of the function δ(R) are
usually called point forces; while forces which include δ(t) may be termed elementary forces. For
the tensorial generalization of the Stokes problem the force components are fi = Tδ(t)mij∂jδ(R),
i, j = 1, 2, 3, where mij is a constant tensor and ∂j is the derivative with respect to the coordinate
xj (R = (x1, x2, x3)); the summation over j is assumed in this expression. It is easy to see that the
solution of the wave equation with tensorial force is given by uT

i = hj∂ju
S
i , where Fihj is replaced

by mij and u
S is the solution of the Stokes problem; the parameters hj correspond to the arms of

the Fi-forces in a torque representation of the tensor mij. The Stokes problem and its tensorial
generalization are basic elements in Seismology, for describing the propagation of seismic waves
generated by (elementary) point seismic sources;[3]-[7] the tensor mij is the tensor of the seismic
moment (divided by density).

The Stokes problem and its tensorial generalization are solved by means of Helmholtz (or Hertz)
potentials.[3, 7] It is known that this approach may be plagued with unphysical contributions,
which arise usually from static (or quasi-static) solutions of the wave equations. This can be seen
immediately by comparing the solution u

T for the isotropic case mij = mδij with the solution
u = gradΦ, Φ̈− c2l∆Φ = Tmδ(t)δ(R), of the wave equation (1), where

Φ =
Tm

4πcl

δ(R− clt)

R
(2)
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is the well-known spherical wave; as we shall see immediately below, the two expressions differ by
a factor 1/2. We provide here a regularization (calibration) procedure for removing the unphysical
terms from the potentials used in solving the equation of the elastic waves.

We focus first on the Stokes problem. We adopt the decomposition u = gradΦ+curlA (divA = 0),
f = gradφ + curlH (divH = 0) in Helmholtz potentials Φ, φ and A, H, where ∆φ = divf
and ∆H = −curlf ; equation (1) is separated in two standard wave equations Φ̈ − c2l∆Φ = φ,
Ä− c2t∆A = H; making use of

φ = −
T

4π
δ(t)(Fgrad)

1

R
, H =

T

4π
δ(t)curl

(

F

R

)

, (3)

we get the Kirchhoff retarded solutions

Φ = − T
(4πcl)2

Fi∂i
∫

dR1
δ(t−|R−R1|/cl)

|R−R1|
1
R1

,

Ai =
T

(4πct)2
εijkFk∂j

∫

dR1
δ(t−|R−R1|/ct)

|R−R1|
1
R1

,

(4)

or
Φ = −(Fgrad)Gl , A = curl(FGt) ,

Gl,t =
T

4πcl,t

[

θ(cl,tt−R) +
cl,tt

R
θ(R− cl,tt)

]

;
(5)

the solution is
ui = −Fi∆Gt + Fj∂i∂j(Gt −Gl) . (6)

We can see that the solution consists of two parts: spherical waves propagating with velocities cl,t,
given by δ-functions and derivatives of δ-functions (arising from the derivatives of the θ-functions
in equations (5)), and a quasi-static displacement which includes the functions θ(R − cl,tt) and
extends over the distance ∆R = (cl − ct)t. The quasi-static contributions, being proportional
to third-order derivatives of t/R, are solutions of the homogeneous wave equation, except for
R = cl,tt, where the solution is not determined (the functions θ are not determined for R = cl,tt).
Therefore, we should disregard contributions to the potentials for R 6= cl,tt and determine the
solution in the vicinity of R = cl,tt by other means; this is a regularization (calibration) procedure
used for getting the solution.

We may see the effect of the unphysical terms in potentials by replacing Fi in equations (5) by
m∂i; we get A = 0 and

Φ =
mT

2πcl

δ(R− clt)

R
+

mT

4πcl
(1− clt/R)δ

′

(R− clt) =
mT

2πcl

δ(R− clt)

R
, (7)

while the direct solution of equation (1) for fi = Tmδ(t)∂iδ(R) is u = gradΦ, where Φ is given by
equation (2); we can see a discrepancy of a factor 1/2. Since second-order derivatives are relevant,
according to equation (6), we apply the calibration procedure to expressions like

∂i∂j(4πcG/T ) = −
δij
R
(1− ct/R)δ + xixj

R3 (1− 3ct/R)δ−

− xixj

R2 (1− ct/R)δ
′

−
ctδij
R3 θ +

3ctxixj

R5 θ ,

(8)

where we omit for the moment the labels l, t and the argument R − ct; comparing equations (2)
and (7), we can see that the δ

′

-contributions should be neglected in equation (8), as well as the
θ-functions, and a factor 1/2 should be inserted; we get the calibrated expression

∂i∂j(4πcG/T ) = −
δij
2R
(1− ct/R)δ +

xixj

2R3 (1− 3ct/R)δ ; (9)
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by construction, it is unique. Making use of this regularization procedure we get immediately,
from equations (6), the solution of the Stokes problem

u
S =

TF

4πctR
δ(R − ctt) +

TR(RF)

4πR3

[

1

cl
δ(R− clt)−

1

ct
δ(R− ctt)

]

; (10)

using u
T = hj∂ju

S and replacing Fihj by mij , we get the solution for the tensorial force, written
as u

T = u
nf + u

ff , where the near-field displacement is

unf
i = −

Tmijxj

4πctR3 δ(R− ctt)+

+ T
8πR3

(

mjjxi + 4mijxj −
9mjkxixjxk

R2

) [

1
cl
δ(R− clt)−

1
ct
δ(R− ctt)

]

(11)

and the far-field displacement is

uff
i =

Tmijxj

4πctR2 δ
′

(R− ctt) +
Tmjkxixjxk

4πR4

[

1
cl
δ
′

(R− clt)−
1
ct
δ
′

(R− ctt)
]

. (12)

We can see that these solutions consist of propagating spherical waves (derivatives of the δ-
functions included), as expected.

Finally, we add another, more formal, derivation of the regularization procedure. It consists in
regarding θ(ct − R) and θ(R − ct) in equation (8) as affected by two unknown factors A and,
respectively, B for ct = R; then, we get from equations (5)

∂i∂j(4πcG/T ) = −
δij
R
(A− Bct/R)δ +

xixj

R3
(A− 3Bct/R)δ −

xixj

R2
(A−Bct/R)δ

′

(13)

(leaving aside the θ-functions) and

∆(4πcG/T ) = −
2

R
Aδ − (A−B)δ

′

; (14)

comparing this expression with equation (2) (where 4πcG/T = Φ/m) we get A = B = 1/2 and

∂i∂j(4πcG/T ) = −
δij
2R
(1− ct/R)δ +

xixj

2R3 (1− 3ct/R)δ −
xixj

2R2 (1− ct/R)δ
′

=

= −
δij
2R
(1− ct/R)δ + xixj

2R3 (1− 3ct/R)δ ,

(15)

which is indeed the calibrated expression given by equation (9).

In conclusion, we highlighted here unphysical terms which may occur in the potentials used for
solving the equation of the elastic waves and provided a regularization (calibration) procedure for
removing them. The solution free of such undesirable contributions is provided here for the Stokes
problem and its generalization to a tensorial force. In the seismological literature the far-field
solution given by equation (12) corresponds to the P (l) and S (t) seismic waves.[3, 7]
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