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Abstract

The interaction of the primary elastic waves (spherical shells) with the plane surface of a
homogeneous isotropic half-space is analzyed. The primary waves are produced by a tensorial
point force, known in Seismology as the tensor of the seismic moment. It is shown that the
primary waves move on the surface with a higher velocity than the elastic wave velocity.
These waves generate additional (secondary) wave sources on the surface, which propagate
on the surface and give rise to secondary waves. The secondary waves on the surface are
computed here in a simplified model. It is shown that they exhibit a singular wavefront and a
long tail, in qualitative agreement with the seismic mai shock recorded on the Earth’s surface.
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In a previous Letter we derived the far-field elastic waves generated by a tensorial point force in
a homogeneous isotropic medium.[1] The tensorial point force is considered in the seismological
literature as a realistic seismic source;[2, 3] in the equation of the elastic waves

ü− c2t∆u− (c2l − c2t )grad · divu = f , (1)

where u is the displacement vector, cl,t are the wave velocities and f is the force per unit mass, the
components of the tensorial force are given by fi = Tδ(t)mij∂jδ(R−R0), i, j = 1, 2, 3, where T
is a measure of the duration of the time-impulse source, mij is the tensor of the seismic moment
(divided by density), R is the position vector, R0 is the point of localization of the force and δ is
the Dirac delta function; t denotes the time, ∂j is the derivative with respect to the coordinate xj
(R = (x1, x2, x3)); due to δ(R −R0) (and the derivatives of this delta function) such forces are
termed point forces; due to the factor δ(t) they may be termed elementary forces. The far-field
solution of this equation is given by[1]

ui =
Tmijxj

4πctR2 δ
′

(R− ctt) +
Tmjkxixjxk

4πR4

[

1
cl
δ
′

(R− clt)−
1
ct
δ
′

(R− ctt)
]

, (2)

where R stands for R − R0; we can see that it consists of propagating spherical waves; due to
the δ

′

-factor, they have the aspect of a double shock and look like localized spherical shells. We
call them primary waves. In Seismology the l-wave is called P wave (primary), while the t-wave
is called S-wave wave (secondary, shear wave).[2]-[6]

We assume an elastic half-space occupying the region x3 = z < 0 and bounded by the plane
surface z = 0; we assume also the wave source placed at R0 = (0, 0, z0), z0 < 0, beneath the
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surface; we are interested in the interaction of the primary waves with this surface. We recognize
immediately that this is equivalent with an inhomogeneous boundary problem for the equation
of the elastic waves, in a peculiar formulation: since the primary waves are propagating spherical
shells they do not act contiunuosly on the entire surface. We expect the primary waves to create
new, propagating wave sources on the surface, which, according to the Huygens principle, will give
rise to additional waves; we call them secondary waves. Being generated by sources propagating
on the surface, they look like a surface elastic radiation. We expect this radiation to account for
the main shock occurring on the surface in typical seismic records. We note that, empirically,
the main shock is retarded in comparison with the primary waves, and have all the components
comparable in magnitude. The determination of the primary waves and the seismic main shock
is a fundamental problem in Seismology.[4]-[11] An indirect way of tackling this problem would
be to expand the primary waves in Fourier series with respect of the coordinates parallel with
the surface, add solutions of the homogeneous equation and impose boundary conditions (usually
free boundaries). Unfortunately, the recomposition of the resulting waves implies approximations
which obscure the physical content of the problem. This is why we adopt here a more direct
approach, which allows the formulation of a simple model, analytically tractable.

The wavefront of the spherical-shell waves given by equation (2) intersects the surface x3 = z = 0

along a circular line defined by R = (x1, x2,−z0), R = (r2 + z20)
1/2

, where r = (x21 + x22)
1/2

is the
distance from the origin (placed on the surface, the epicentre) to the intersection points (we recall
that R and R are in fact R−R0 and R−R0). The radius R moves with velocity c, R = ct, t >|

z0 | /c, and the in-plane radius r moves according to the law r =
√

R
2
− z20 =

√

c2t2 − z20 , where

c stands for the velocities cl,t; its velocity v = dr/dt = c2t/r is infinite for r = 0 (R = ct =| z0 |)
and tends to c for large distances.

The finite duration T of the source makes the δ′-functions in equation (2) to be viewed as functions
with a finite spread l = ∆R = cT ≪ R; consequently, the intersection line of the waves with the
surface has a finite spread ∆r, which can be calculated from

R
2

= r2 + z20 , (R + l)2 = (r +∆r)2 + z20 ; (3)

hence,

∆r ≃
2Rl

r +
√

r2 + 2Rl
. (4)

we can see that for r → 0 the width ∆r ≃
√

2 | z0 | l of the spot on the surface is much larger

than the width of the spot for large distances ∆r ≃ l (2 | z0 |≫ l). For values of r not too close
to the origin (the epicentre) we may use the approximation ∆r ≃ Rl/r. As long as the spherical
wave is fully included in the half-space its total energy E0 is given by the (constant) energy
density integrated over the spherical shell of radius R and thickness l. If the wave intersects the
surface of the half-space, its energy E is given by the energy density integrated over the spherical
sector which subtends the solid angle 2π(1 + cos θ), where cos θ =| z0 | /R (see Fig.1). It follows
E = 1

2
E0 (1+ | z0 | /ct) for ct >| z0 |. We can see that the energy of the wave decreases by the

amount Es =
1
2
E0 (1− | z0 | /ct), ct >| z0 |. This amount of energy is transferred to the surface,

which generates secondary waves, according to the Huygens principle.

In the spot with the width ∆r generated on the surface by the far-field primary waves given
by equation (2) we may expect a reaction of the (free) surface, such as to compensate the force
exerted by the incoming spherical waves. This localized reaction force generates secondary waves,
distinct from the incoming, primary spherical waves. The secondary waves can be viewed as waves
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Figure 1: Spherical-shell wave intersecting the surface z = 0 at P .

scattered off the surface, from the small region of contact of the surface spot (practically, a circular
line). If the reaction force is strictly limited to the zero-thickness surface (as, for instance, a surface
force), it would not give rise to waves, since its source has a zero integration measure. We assume
that this reaction appears in a surface layer with thickness ∆z (∆z ≪| z0 |) and with a surface
extension 2πr∆r, where it is produced by volume forces. The thickness ∆z of the superficial layer
activated by the incoming primary wave may depend on R (and r), as the surface spread ∆r does
(equation (4)); for instance, from Fig.1 we have ∆z = l | z0 | /R. Since for an intermediate,
limited region of the variable r (and R) (i.e., for a region not very close to the origin and not
extending to infinity), the dependence on r of the product ∆r∆z is weak, and, in a simplified
model, we may neglect this dependence in what follows.

The volume elastic force per unit mass is given by ∂jσij/ρ, where
σij = ρ [2c2tuij + (c2l − 2c2t )ukkδij] is the stress tensor, uij is the strain tensor and ρ is the density
of the body. The reaction force which compensates this elastic force is

fi = −∂jσij/ρ = −∂j
[

2c2tuij + (c2l − 2c2t )ukkδij
]

. (5)

We calculate the strain tensor from the displacement given by equation (2) and use it in equation
(5); in order to compute the secondary waves we use the decomposition in Helmholtz potentials.
We denote by us the displacement vector in the secondary waves, and introduce the Helmholtz
potentials ψ and B (divB = 0) by us = gradψ+ curlB; then, we decompose the force f according
to f = gradχ + curlh (divh = 0), where ∆χ = divf and ∆h = −curlf ; by the equation of the
elastic waves, the Helmholtz potentials satisfy the wave equations

ψ̈ − c2l∆ψ = χ , B̈− c2t∆B = h ; (6)

by straightforward calculations we get χ = −c2l divu and h = c2t curlu, where u is given by equation
(2); therefore,

χ = −
clTmjkxjxk

4πR3
δ′′(R− clt) , hi = εijk

ctTmklxjxl
4πR3

δ′′(R− ctt) ; (7)

we can see that the potentials χ and h "move" with velocities cl and, respectively, ct (vl and,
respectively, vt in the plane z = 0).

We can calculate the displacement in the secondary waves us = gradψ + curlB, by solving the
wave equations (6) with χ = −c2l uii and h = c2t curlu restricted to the superficial layer of thickness
∆z and surface spread 2πr∆r. Apart from appreciable technical complications, this procedure
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Figure 2: The function cosϕ0 vs r
′

for C > 0 (equation (16)).

brings many superfluous features which obscure the relevant physical picture. This is why we
prefer to use a simplified model which makes use of potentials of the form

χ = χ0(r)δ(z)δ(r − vlt) , h = h0(r)δ(z)δ(r − vtt) (8)

(divh0 = 0); equations (8) describe wave sources, distributed uniformly along circular lines on
the surface, propagating on the surface with constant velocities vl,t and limited to a superficial
layer with zero thickness and a circular line with zero width; their magnitudes χ0(r) and h0(r)
have an approximate 1/R-dependence, which has a slow variation for r ≤| z0 | (and r not very
close to the origin); for this range of the variable r we may consider χ0 and h0 as being constant
parameters. The velocities vl,t in equation (8) correspond to the velocities vl,t = dr/dt = c2l,tt/r
calculated above, which are greater than cl,t, depend on r and tends to cl,t for large values of the
distance r. We make a further simplification and consider them as constant velocities slightly
greater than cl,t (over an intermediate, limited range of variation of r). Also, in the subsequent
calculations we consider the origin of the time at r = 0 (the origin) for each primary wave and the
associated secondary source. The simplified model of secondary sources introduced here retains
the main features of the exact problem, incorporated in the surface localization and propagation
of the sources with velocities vl,t greater than wave velocities cl,t; on the other hand, by using
this model we lose the anisotropy induced by the tensor mij and specific details regarding the
dependence on the distance. Since the secondary sources are moving sources on the surface we
may call the secondary waves produced by these sources "surface elastic (seismic) radiation".

Making use of the potentials given by equation (8), the solutions of equations (6) can be represented
as

ψ =
1

4πc2l

∫

dt1

∫

dR1
χ0(r1)δ(z1)δ(r1 − vlt1)

|R−R1|
δ (t− t1 − |R−R1| /cl) (9)

and a similar equation for B. First, we focus on the potential ψ, which can be written as

ψ =
1

4πvc2

∫

dr1
χ0(r1)δ

[

t− r1/v − (r2 + r21 − 2rr1 cosϕ+ z2)
1/2
/c
]

(r2 + r21 − 2rr1 cosϕ+ z2)
1/2

, (10)

where ϕ is the angle between the vectors r and r1 and we use c and v for cl and, respectively, vl,
for the sake of simplicity. In order to calculate the integral with respect to the angle ϕ in equation
(10) we introduce the function

F (cosϕ) = t− r1/v −
(

r2 + r21 − 2rr1 cosϕ+ z2
)1/2

/c (11)
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and look for its zeros, F0 = F (cosϕ0) = 0 (r1 < vt); we note that, if there exists one root of this
equation, there exists another one at least, in view of the symmetry cosϕ = cos(2π − ϕ). Then,
we expand the function F in a Taylor series in the vicinity of its zero, according to

F = F0 + (cosϕ− cosϕ0)F
′ + ... = (cosϕ− cosϕ0)F

′ + ..., (12)

where F ′ is the derivative of the function F with respect to cosϕ for cosϕ = cosϕ0. It is easy to
see that the integral reduces to

ψ =
1

2πcvr

∫

∞

0
dr1

χ0(r1)

sinϕ0

, (13)

where ϕ0 is the root of the equation F (cosϕ0) = 0, lying between 0 and π.

The root cosϕ0 is given by

F (cosϕ0) = t− r1/v − (r2 + r21 − 2rr1 cosϕ0 + z2)
1/2

/c = 0, (14)

or
(

1− c2/v2
)

r21 − 2
(

r cosϕ0 − c2t/v
)

r1 −
(

c2t2 − r2 − z2
)

= 0 (15)

for r1 < vt. The important feature brought by the diference between the two velocities c and v can
be accounted for conveniently by assuming that the two velocities are close to one another; we set
v = c(1 + ε), 0 < ε ≪ 1 (as for sufficiently large distances). In this circumstance we may neglect
the quadratic term ∼ r21 in equation (15) and replace t by the "advanced" time τ = t(1− ε) (i.e.,
τl,t = t(1− εl,t)); we get

cosϕ0 ≃
2cτr1 − C

2rr1
, C = c2τ 2 − r2 − z2 (16)

for r! < vt = cτ(1 + 2ε). It is easy to see that this equation has no solution for C < 0 (because of
the condition r! < vt); for C > 0 (c2τ 2 − r2 − z2 > 0) it has two solutions

r
(1)
1 =

C

2(cτ + r)
, r

(2)
1 =

C

2(cτ − r)
(17)

corresponding to cosϕ0 = −1 (ϕ0 = π) and, respectively, cosϕ0 = 1 (ϕ0 = 0) (Fig.2). For z = 0

the two roots r
(1,2)
1 reduce to r

(1,2)
1 = (cτ∓r)/2; we can see that the sources of the secondary waves

which arrive at r lie inside an anullus with radii r
(1,2)
1 and a constant width r, which expands on

the surface with velocity c/2, after a time interval τ = r/c. In the integral given by equation (15)

we pass from the variable r1 to the variable ϕ0; for a limited range of integration r (from r
(1)
1 to

r
(2)
1 ), we may take χ0 out of the integral sign; we get

ψ ≃
Cχ0

4πc2

∫ π

0
dϕ0

1

(r cosϕ0 − cτ)2
, (18)

or

ψ ≃
Cχ0

4πc2r2
∂

∂x

∫ π/2

0
dϕ0

(

1

cosϕ0 − x
−

1

cosϕ0 + x

)

, x = cτ/r > 1. (19)

The integrals in equation (19) can be effected immediately; we get the potential

ψ ≃
χ0

4c2l

(c2l τ
2
l − r2 − z2)clτl

(c2l τ
2
l − r2)

3/2
, (20)
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Figure 3: Primary wave (PW ), moving with velocity v on the surface, secondary wave (SW ),
moving with velocity c < v, the main shock (MS) and the long tail (LT ); the separation between
the two wavefronts is ∆s = 2(v − c)t and the time delay is ∆t = (2r/c)(v/c− 1), where r is the
distance on the surface from the origin.

where the velocity cl is restored. Similarly, we get the vector potential

B ≃
h0

4c2t

(c2t τ
2
t − r2 − z2)ctτt

(c2t τ
2
t − r2)

3/2
; (21)

these equations are valid for Cl,t = c2l,tτ
2
l,t − r2 − z2 > 0.

We can see that the wavefronts r2+z2 = c2l,tτ
2
l,t defines two spherical perturbations which move with

velocities cl,t. The singular behaviour of these waves for z = 0 resembles the algebraic singularity of
the waves in two dimensions produced by localized sources.[12, 13] The discontinuities exhibited by
these functions are present irrespective of the particular dependence on r of the source potentials,
as long as these potentials remain localized; they are related to a constant, finite velocity of
propagation of the waves.

Making use of us = gradψ + curlB we can compute the displacement vector us in the secondary
waves. We are interested mainly in the waves propagating on the surface (z = 0). First, we
note that the displacement is singular at cl,tτl,t = r; this indicates the existence of two main
shocks, occcurring after the arrival of the primary waves. Indeed, the primary waves arrive at the
observation point r at the time tp = r/vl,t = (r/cl,t)(1− εl,t), while the main shocks occur at tm =
τl,t/(1−εl,t) ≃ (r/cl,t)(1+εl,t); we can see that there exists a time delay ∆t ≃ tm−tp ≃ 2(r/cl,t)εl,t
between the primary waves and the wavefronts of the secondary waves (the main shocks). The
sharp singularity in equations (20) and (21) is related to our using constant velocities vl,t; actually,
an uncertainty of the form ∆v ≃ cε exists in these velocities, which entails an uncertainty τε in
the time τ , such that the smallest value of the denominator in equations (20) and (21) is of the
order c2τ 2ε. In the vicinity of the two main shocks the leading contributions to the components
of the surface displacement (z = 0, in polar cylindrical coordinates) are given by

usr ≃
χ0τl
4cl

·
r

(c2l τ
2
l − r2)

3/2
, usϕ ≃ −

h0zτt
4ct

·
r

(c2t τ
2
t − r2)

3/2
(22)

and

usz ≃
h0ϕτt
4ct

·
c2t τ

2
t

r (c2t τ
2
t − r2)

3/2
; (23)

we can see that there exists a horizontal component of the displacement perpendicular to the
propagation direction (usϕ) and both the r-component and the ϕ, z-components, which make
right angles with the propagation direction, are of the same order of magnitude.[10] For long
times (cl,tτl,t≫ r) the displacement (from equations (22) and (23)) goes like

usr ≃
χ0r

4c4l τ
2
l

, usϕ ≃ −
h0zr

4c4t τ
2
t

, usz ≃
h0ϕ
4c2t r

(24)
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which show that the displacement exhibits a long tail, especially the z-component; it subsides as
a consequence of the time-dependence induced in the potential h0 by the integration variable r1,
a circumstance which is neglected in the calculations presented here. The main shock and its long
tail obtained here are in qualitative agreement with the seismic records.[3, 9, 10] Primary and
secondary waves, the main shock and the long tail are shown in Fig.3.

In conclusion, we have examined in this Letter the interaction of the primary elastic waves with the
plane surface of a homogeneous isotropic half-space. The primary waves are propagating spherical
shells generated by tensorial point forces, which, in Seismology, are governed by the tensor of the
seismic moment. The circle of intersection of the primary waves with the surface expands on the
surface with a greater velocity than the velocity of the elastic waves. The primary waves generate
additional wave sources, moving on the surface. These sources generate secondary waves, wich
may be viewed as surface elastic (seismic) radiation. The secondary waves are estimated in this
Letter in a simplified model. It is shown that the secondary waves have a singular wavefront
on the surface, which is delayed with respect to the primary waves, known in Seismology as the
seismic main shock.
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