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Abstract

It is shown that some difficulties arising in the non-relativistic quantum-mechanical treat-
ment of a charge in the field of the electromagnetic radiation can be solved by analyzing the
quantization of the motion starting with the classical mechanical action and the hamilto-
nian formalism. By means of unitary transformations of the Kramers-Henneberger type the
equivalence of the "dipole" hamiltonian and the "standard" non-relativistic hamiltonian is
shown and an effective (dressed) potential is derived, which includes the radiation effects on
the original structural (bound-state) potential. It is shown that for low-intensity radiation
there appear multi-photon absorption and high-order harmonics generation, while moderate-
or high-intensity radiation favours the fragmentation of the bound states of charges (dissocia-
tion). The fragmentation occurs through the complete removal, after a lapse of time, of both
the radiation and the structural interaction; the process continues, partly, with the fragments
penetrating a possible potential barriers and, partly, with the recombination of the fragments
(recollisions). The fragmentation (dissociation) rate is computed explicitly for one charge
penetrating through Coulomb barriers. Applications are discussed to ionization of atoms
and large molecules, radiation-induced proton emission from atomic nuclei, ion emission from
molecules or fragmentation of atomic clusters.

Introduction. The interaction of laser radiation with matter was focused since the beginning
on the radiation-induced atom ionization. Thereafter, the problem was extended to the ioniza-
tion of the molecules or atomic clusters in laser radiation, radiation-induced proton emission from
atomic nuclei or even ion emission from molecular aggregates.[1]-[4] In general, we can formulate
the problem of the ejection of a charge, or several charges, from a bound state, as caused by
electromagnetic radiation. This problem can be called radiation-induced fragmentation (dissoci-
ation) of bound states. Originally, the problem was approached by time-dependent perturbation
theory, taking into account the fact that there not exist stationary states. Keldysh[5] noticed that
such a calculation implies a "quasi-classical" tunneling1 through a potential barrier that separates
the bound state from the free state.[6] Later, it was realized that the formal tunneling approach
involves in fact a unitary transformation known as the Kramers-Henninger transformation.[7]-[9]2

1The "quasi-classical" tunneling[6] implies an exponent −(2/~)Im
∫
(−Edt + pdr), where dS = −Edt+ pdr is

the classical action (E being the energy and p being the momentum), the integral being performed near the point
of "classically impossible motion"; the motion should proceed with a large increase in the mechanical action, which
means an adiabatic interaction, lasting a long time, and a long path with large momentum, leading to a small
exponent. As we shall see in this paper, these conditions are not met especially for high-intensity radiation.

2In Ref. [8] the transformed structural (bound-state) potential is applied to a harmonic oscillator which interacts
with the radiation.
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All these calculations imply simplifying approximations which affect the results. Typically, the
results have an "exponential accuracy", i.e. they include only small exponentials and account at
most only for the potential barrier generated by radiation.[10]-[13] In addition, they neglect details
of the charge dynamics. We show here that a consistent inclusion of the initial conditions in the
Kramers-Henninger transformation may remove completely both the radiation and the structural
(bound-state) interaction, leading to the fragmentation (dissociation) of the bound state; the pro-
cess continues, partly, with the (standard) tunneling through a possible potential barrier generated
both by the radiation and the structural interaction and, partly, with the recombination of the
fragments (recollisions). We apply this procedure to the ejection of a charge from a bound state
through a Coulomb barrier and discuss various other cases of fragmentation, like proton emission
from atomic nuclei or ion emission from molecules.

A few other technical points related to charge motion in electromagnetic radiation are clarified.
First, we should be aware that, even if the radiation has a "relativistic" intensity, originally, as
long as the bound state persists (for a very short time), the motion of the charge is practically
non-relativistic; this is achieved by increasing correspondingly the electromagnetic momentum
p in the well-known velocity expression v = (p − qA/c)/m, where q is the charge, A is the
vector potential, m is the mass of the charge and c is the speed of light in vacuum, such that
v/c ≪ 1. The well-known intensity parameter η = qA/mc2, which separates the non-relativistic
regime (η < 1) from the relativistic regime (η > 1) is relevant for a free charge. This is why
we give special attention to the non-relativistic approximation and start our considerations with
this approximation. In particular, it is emphasized that the spatial dependence of the radiation
field brings higher-order relativistic corrections and should be left aside within the non-relativistic
aprpoximation.

Second, it is well-known that there exists two non-relativistic hamiltonians of a charge in radia-
tion field, one which includes the electric field (the so-called "dipole" approximation) and another,
which includes the vector potential (the so-called "standard" non-relativistic hamiltonian). These
two hamiltonians have completely different forms. We show here, by using a unitary transforma-
tion of the Kramers-Henninger type, that the two forms are equivalent (as they should); however,
the equivalence is realized only by a consistent treatment of the initial conditions. We emphasize
this special requirement of the theory, because, as natural as it may appear, its infringement may
lead to appreciable inconsistencies. It is this condition which ensures the removal, after some
duration, of the interaction (both the electromagnetic and the structural interaction).

Hamiltonians. The mechanical action of a charge q with mass m interacting with an electro-
magnetic radiation field with the vector potential A (divA = 0) is

S =

∫ b

a

(−mcds− q

c
Aidx

i) , (1)

where s is the world-line length, xi are the coordinates, a and b are two world points and c is the
speed of light in vacuum. Introducing ds = c

√
1− v2/c2dt, where v is the velocity of the charge,

we get

S =

∫ b

a

(−mc2
√
1− v2/c2dt+

q

c
Adr) , (2)

or

S =

∫ b

a

(−mc2
√

1− v2/c2 +
q

c
vA)dt , (3)

which highlights the well-known lagrangian

L = −mc2
√

1− v2/c2 +
q

c
vA (4)
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of a charge in radiation field.

From (1) we can write also

S =
∫ b
a
(−mc2

√
1− v2/c2dt− q

c
rdA) =

=
∫ b
a
(−mc2

√
1− v2/c2dt− q

c
r∂A
∂t
dt− q

c
r∂αAdx

α) =

=
∫ tb
ta
(−mc2

√
1− v2/c2 − q

c
r∂A
∂t

− q
c
r(vgrad)A)dt ,

(5)

or, since grad(vA) = (vgrad)A+ v × curlA (the derivatives being taken at constant v),3

S =

∫ tb

ta

[−mc2
√

1− v2/c2 + qrE+
q

c
r(v×H)− q

c
rgrad(vA)]dt , (6)

where α = 1, 2, 3. We can see the occurence of the Lorentz force in the lagrangian.

The most convenient way of getting the hamiltonian is to use equation (4), which gives

p =
∂L

∂v
=

mv√
1− v2/c2

+
q

c
A ; (7)

from H = vp− L we get the hamiltonian

H = c

√
m2c2 + (p− q

c
A)2 ≃ mc2 +

1

2m
(p− q

c
A)2 + ... , (8)

where the non-relativistic limit is given (it is worth noting that, formally, in the derivation of the
non-relativistic hamiltonian we kept corrections up to the v2/c2-order). The quantization of the
hamiltonioan leads to Dirac or Schrodinger equation (or Klein-Gordon equation). For instance,
we get the Schrodinger equation

i~
∂ψ

∂t
=

1

2m
(−i~ ∂

∂r
− q

c
A)2ψ (9)

for the wavefunction ψ, where ~ is Planck’s constant and the term mc2 has been dropped (it gives

a phase factor e−
i
~
mc2t).

The separate dependence of the non-relativistic hamiltonian on the position r (included in p)
and the world coordinate ωt − kr included in A makes difficult the solution of the Schrodinger
(or Dirac) equation (ω is the radiation frequency and k is the radiation wavevector). However,
turning back to the action function, we can get some simplifications.

The potential vector includes terms of the form A = A0 cos(ωt− kr). The infinitesimal phase of
the radiation is

ωdt− kdr = ωdt

(
1− vk

ck

)
; (10)

the charge moves in the direction of the lowest-varying phase, which means vk = vk (v and
k parallel); the charge becomes rapidly relativistic, i.e. v ≃ c; the potential vector becomes
a constant, the term vA is ineffective in the action, and the charge is practically a free particle
(classical, or quasi-classical). In a (traveling) radiation wave the charge becomes rapidly relativistic
and behaves like a free particle; it sees not anymore the field, while the reaction force is still small,
up to extremely relativistic velocities where it may dominate; however, such extreme relativistic
velocities are not reached for realistic conditions; when the reaction force dominates the validity
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Figure 1: Schematic representation of the total tunneling probability wtot (in arbitray units) vs

time t for A≪ 1 ≪ B (the notations are defined in text).

of the classical electromagnetism ceases. Similar arguments can be used for an electromagnetic
standing wave, which is a sum of two waves traveling in opposite directions; it is easy to see that
the motion in a standing wave is possible only with small, non-relativistic, velocities.

In the non-relativistic limit the inequality vk/ck ≪ 1 is valid and we may neglect the spatial
phase in the vector potential, which depends now only on ωt. This is equivalent with recognizing
that the magnetic field has not any appreciable effect, and it may be neglected. From the above
equations the lagrangian is

L =
1

2
mv2 + qrE (11)

and the hamiltonian is

Hd =
1

2m
p2 − qrE ; (12)

the corresponding Schrodinger equation is

i~
∂ψ

∂t
=

p2

2m
ψ − qrEψ , (13)

where p = −i~ ∂
∂r

(the relativistic term mc2 is left aside); in these equations the electric field has
components of the form E = (ωA0/c) sinωt. The hamiltonian Hd may be called the "dipole"
hamiltonian, indicated by the suffix d. On the other hand, from equation (8) we get the non-
relativistic hamiltonian

Hp =
1

2m
(p− q

c
A)2 =

p2

2m
− q

mc
pA+

q2

2mc2
A2 , (14)

3In general, grad(ab) = (agrad)b+ (bgrad)a + a× curlb+ b× curla.
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which leads to the Schrodinger equation

i~∂ψ
∂t

= 1
2m

(p− q
c
A)2ψ =

= p2

2m
ψ − q

2mc
(pA+Ap)ψ + q2

2mc2
A2ψ ;

(15)

the suffix p comes from "momentum" and the hamiltonian Hp may be called the "standard"
non-relativistic hamiltonian.

Although the hamiltoniansHd andHp given by equations (12) and, respectively, (14) look different,
they are in fact equivalent; Hd is obtained by neglecting v/c in the phase of the radiation, while
Hp is obtained up to corrections of order v2/c2 in magnitude. It is important to note that the
spatial phase must be neglected in Hp, in order to keep the estimation within the same order of
magnitude. Consequently, we may say that the non-relativistic limit implies only the temporal
phase. Within these conditions it is easy to check that the classical equations of motion derived
from both Hd and Hp have the same solutions. It is worth noting that the A2-term in equation
(14) does not contribute to the classical equations of motion, as it depends only on the time.
Similar considerations are valid for static fields too. We note that the existence of a magnetic field
implies relativistic effects.

Schrodinger equation. Equivalence of the hamiltonians. We pass now to the analysis of
the quantum-mechanical hamiltonians Hd,p. Let us add a potential V (r) and denote

H0 =
1

2m
p2 + V (r) ; (16)

the Schrodinger equation (13) becomes

i~
∂ψ

∂t
= H0ψ − qrE0 sinωt · ψ , (17)

where E0 = ωA0/c; using the unitary transform

ψ = e−
iq
~ω

rE0(cosωt−1)φ , (18)

we get

i~
∂φ

∂t
= e

iq
~ω

rE0(cos ωt−1)H0e
−

iq
~ω

rE0(cos ωt−1) ; (19)

making use of

eOBe−O = B + [O,B] +
1

2!
[O, [O,B]] + ... (20)

for any operators O and B, we get

e
iq
~ω

rE0(cos ωt−1)pe−
iq
~ω

rE0(cos ωt−1) = p− q

ω
E0(cosωt− 1) = p− q

c
(A−A0) (21)

and

i~
∂φ

∂t
= e

iq
~ω

rE0 cosωtH0e
−

iq
~ω

rE0 cosωtφ =
1

2m

[
p− q

c
(A−A0)

]2
φ+ V (r)φ = H

′

pφ ; (22)

this shows explicitly the equivalence of the hamiltonians Hd and H
′

p. It is worth noting that it

is the equivalence of Hd with H
′

p not with Hp given by equation (14); the former hamiltonian
includes A−A0, while the latter includes only A. In writing the interaction with the radiation in
the mechanical action it is immaterial a constant A0 in describing the radiation field, while this
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constant is important in the charge dynamics, through the coupling pA0. The transformation
given by equation (18) is known as the Goeppert-Mayer transformation.[14]

It is of utmost importance to realize the relevance of including correctly the initial conditions
in the unitary transformation given by equation (18). First, we note that it is our desire to
remove the interaction −qrE0 sinωt to an extent as large as possible; this is why we require
ψ(t = 0) = φ(t = 0), where the interaction −qrE0 sinωt |t=0= 0 disappears for t = 0. Second, we
note that the interaction disappears in H

′

p at t = 0 only if A0 is included; we would not have the

equivalence of the hamiltonians Hd and H
′

p without the correct inclusion of the initial condition.

Similarly, it would not be convenient to take A = A0 sinωt and E = E0 cosωt (E0 = −ωA0/c),
since then the interaction is not vansihing at t = 0, but at t0 = π/2ω, which would introduce a
small inconvenience in calculations. We emphasize that the interaction is −qrE and not −qvA/c,
since E is uniquely definible (measurable), while A is not.

We note also that the constant term A0 has no effect on the classical dynamics; also, it has no effect
on the quantum-mechanical dynamics as long as its contribution to the phase of the wavefunction
preserves a real phase; when the phase becomes imaginary (and the classical dynamics is not
relevant anymore), the term A0 may become relevant. This is another instance of a typically
quantum-mechanical effect.

It is also worth noting that the wavefunction ψ (equation (18)) includes momentum
P = −(qE0/ω)(cosωt− 1) and energy E = −qrE0 sinωt (from equation (17)); this represents the
interaction with "particles" which obey the classical equation of motion Ṗ = −gradE .

Unitary transformation. Let us write now

H
′

p =
1
2m

(p− q
c
A+ q

c
A0)

2 + V (r) = H0 − q
mc

(A−A0)p+ q2

2mc2
(A−A0)

2 ,

i~∂φ
∂t

= H0φ− q
mc

(cosωt− 1) ·A0p · φ+ q2

2mc2
A2

0(cosωt− 1)2 · φ .

(23)

We introduce now another transformation, given by

φ = e
iq

mc~

∫ t dt
′
(cosωt

′
−1)·A0p−

iq2

2mc2~
A2

0

∫ t dt
′
(cos ωt

′
−1)2χ =

= e−
iq2

8mc2~ω
A2

0
(sin 2ωt−8 sinωt+6ωt)e

iq
mc~ω

(sinωt−ωt)·A0pχ ,

(24)

which leads to
i~∂χ

∂t
= e−

iq
mc~ω

(sinωt−ωt)·A0pH0e
iq

mc~ω
(sinωt−ωt)·A0pχ =

= 1
2m
p2χ+ e−

iq
mc~ω

(sinωt−ωt)·A0pV (r)e
iq

mc~ω
(sinωt−ωt)·A0pχ ,

(25)

or

i~
∂χ

∂t
=

1

2m
p2χ + Ṽ (r)χ , (26)

where
Ṽ (r) =

[
e−

q

mω2
(sinωt−ωt)·E0gradV (r)

]
. (27)

The wavefunction ψ is given by

ψ = e−
iq2

8mc2~ω
A2

0
(sin 2ωt−8 sinωt+6ωt)e−

iq
~ω

rE0(cos ωt−1)e
iq

m~ω2
(sinωt−ωt)E0pχ . (28)

Making use of the identity
eOeBe−O = e[O,B]eB (29)
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for [O,B] = c number, we put also equation (28) in the form4

ψ = e
iq2

8mc2~ω
A2

0
(3 sin 2ωt−8ωt cosωt+2ωt)e

iq

m~ω2
(sinωt−ωt)E0pe−

iq
~ω

(cos ωt−1)rE0χ . (30)

We can see that in the presence of the electromagnetic radiation the dynamics of the charge is
governed by the interaction Ṽ (r). This transformed interaction can be viewed as the structural
interaction V (r) (which may be responsible for a bound state) dressed by the radiation. Basically,
this dressed interaction is discussed in Refs. [7]-[9].

Let us note, for the sake of the formal completeness, that the above calculations are valid also for
an assembly of charges qa, with mass ma, a = 1, 2, .... The wavefunction is given by

ψ = e
−

∑

a
iq2a

8mac2~ω
A2

0
(sin 2ωt−8 sinωt+6ωt)×

×e−
∑

a
iqa
~ω

raE0(cos ωt−1)e
∑

a
iqa

ma~ω2
(sinωt−ωt)E0paχ ,

(31)

where
i~∂χ

∂t
=
∑

a
1

2ma
p2aχ+ Ṽ (r1, r2, ...)χ ,

Ṽ (r1, r2, ...) =
[
e
−

qa
maω2

(sinωt−ωt)·E0gradaV (r1, r2, ...)
]
.

(32)

Free charge in radiation field. Let us assume that V (r) = 0; then ψ(t = 0) = χ = e−
i

2m~
p2+ i

~
pr,

where p (momentum) is a c − number. At later times ψ is given by equation (30); we can see
that the charge has an average additional momentum prad = qE0/ω and an average additional
energy Erad = q2A2

0/4mc
2; we can see that the charge is accelerated rapidly (within the limit

Erad ≪ mc2). The wavefunctions ψ labelled by p are orthogonal and complete. We emphasize
that these wavefunctions are valid in the region where the radiation is present. The limitation to
the factor

e
iq

m~ω2
E0p sinωt =

∞∑

n=−∞

Jn(qE0p/m~ω2)e
i
~
(n~ωt) (33)

in the wavefunction ψ (equation (30)), where Jn are the Bessel function of the n− th order, which
would imply multiple photons, is not warranted.

Bound charges. Fragmentation (Dissociation). We consider now electrons in atoms, elec-
trons and ions in molecules, in atomic clusters or nucleons in atomic nuclei. Most of these charges,
which are relevant for the dynamics, exhibit a quasi-classical motion, due, on one side, to the deep
potential wells in heavy atoms and large molecules and, on the other side, to the large ionic mass.
We assume that single bound charges are relevant for the dynamics of such assemblies of particles.
We assume also that the potential V (r) is responsible for the bound state.

Let us focus on the transformed potential Ṽ (r) of a charge, given by equation (27); it includes the
effects the radiation causes on the original potential V (r). The coefficient ξ = (q/mω2)E0grad

which appears in the exponent of Ṽ (r) can be represented as

ξ =
qE0

mω2a
=

qA0

mcωa
= η

λ

a
, (34)

where η = qA0/mc
2, a is the size of the assembly along the direction of the electric field and λ is

the wavelength of the radiation; for optical radiation λ is of the order 10−4cm, while for atomic

4We note also the identity eOeB = e
1

2
[O,B]eO+B for [O,B] a c− number.
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assemblies a is of the order 10−8cm; we can see that even for a low-intensity radiation (qA0/mc
2 ≪

1) this coefficient is large. The vector potential can be estimated from A0 =
√
8πcI/ω, where I is

the radiation intensity; for ξ > 1 and η < 1 (non-relativistic regime) the intensity I must lie within
the range 1012w/cm2 < I < 1018w/cm2 for electrons in atomic assemblies and optical radiation
(ω = 1015s−1). Similarly, for protons in atomic nuclei 108w/cm2 < I < 1024w/cm2, while for ions
in molecules 1018w/cm2 < I/A2 < 1024w/cm2, where A is the mass number of the ion. We can
see that for protons in atomic nuclei even the available high-intensity radiation remains in the
non-relativistic range (and the coefficient given above is very large since a is very small); for ions
in molecules in low-intensity radiation the parameter ξ may be smaller than unity. First, let us
assume ξ ≫ 1.

Let us direct the electric field E0 along the z-direction; from equation (27) we can write

Ṽ = V− qE0

mω2
(sinωt−ωt)V1+

q2E2
0

2m2ω4
(sinωt−ωt)2V2+... = V

(
x, y, z − qE0

mω2
(sinωt− ωt)

)
, (35)

where V1 = ∂V/∂z, V2 = ∂2V/∂z2; we can see that for a sufficienty large lapse of time the potential

Ṽ at the position of the charge is the original potential V at coordinate z−(qE0/mω
2)(ωt−sinωt);

at this point the potential V may vanish; this happens in a time τ (from the application of the
radiation field) given by

ωτ − sinωτ ≃ 1

ξ
, (36)

which leads to
τ ≃ (6/ξ)1/3ω−1 . (37)

We can see that for ξ ≫ 1 the time τ is in fact very short; it is much shorter than the radiation
period ω−1, which means that during this time the radiation exhibits practically no oscillation.
The oscillations appear for much lower radiation intensities (ξ ≪ 1).

At the moment τ the charge becomes free and the bound state is fragmented (dissociated); the
interaction felt by the charge is vanishing and the charge is left with the kinetic energy and
momentum acquired while it was localized in a region of the dimension a of the bound state.
Therefore, we may take the charge energy of the order ε = ~

2/ma2 and the charge momentum
of the order p = ~/a. In order to escape from the region of the bound state the charge should
penetrate a possible potential barrier U . We assume a Coulomb barrier U = Zq2/r, generated by
Zq charges, where, for convenience, we introduce the charge number Z. The radial path of the
charge ranges from r1 of the order a up to r2 = Zq2ma2/~2; aH = ~

2/mq2 is the Bohr radius, such

that r2 = Za2/aH . The relevant factor in the wavefunction χ is e
i
~

∫ r2
r1

dr·p
, where p =

√
2m(ε− U),

where we identify the radial momentum with the total momentum (the orbital motion may be left
aside); the relevant factors in the total wavefunction ψ given by equation (28) are

e
−

iq

m~ω2
(ωt−sinωt)E0 cos θ·(p2−p1)+

i
~

∫ r2
r1

dr·p
, (38)

where p1 =
√
2m(ε− Zq2/a), p2 = 0 and θ is the angle between E0 and p. The transition

probability is w = e−γ , where

γ = Aξ(ωt− sinωt) cos θ +B

A = 2a
~

√
2m(Zq2/a− ε) , B = 2

~

∫ r2
r1
dr
√
2m(Zq2/r − ε) ;

(39)

the time t in this equation is measured from t = τ . We may neglect ε in comparison with Zq2/a
(we assume Za≫ aH) and get

γ ≃ 2

√
2Za

aH
ξ(ωt− sinωt) cos θ +

√
2a

aH
β , (40)
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where β = πZ for Z ≃ 1 and β = 2
√
Z for Z ≫ 1 (in the evaluation of the integral from r1

to r2, we have asssumed aH ≪ Za). ‘The motion proceeds along the path of the minimal phase
variation, such that, in the above expression, we have the condition γ > 0, i.e.,

cos θ > cos θ0 = −β(a/4ZaH)
1/2

ξ(ωt− sinωt)
; (41)

we can see that for τ < t < t0 = (β2a/4ZaH)
1/6τ the ejection of the charge proceeds at all angles,

while for t > t0 = (β2a/4ZaH)
1/2τ it proceeds only at angles 0 < θ < θ0; for large times θ0 → π/2

and the emission proceeds mainly along the direction of the electric field, as expected. The total
probability is obtained by integrating over angle θ; we get

wtot =

√
aH/2Za

ξ(ωt− sinωt)
sinh

[
2
√
2Za/aHξ(ωt− sinωt)

]
e−

√
2aβ/aH , τ < t < t0 (42)

and

wtot =

√
aH/2Za

2ξ(ωt− sinωt)

[
1− e−2

√
2Za/aHξ(ωt−sinωt)−

√
2aβ/aH

]
, t > t0 ; (43)

we can see that the probability is dominated by the fast process of dissociation occurring in the
short time interval τ < t < t0 (equation (42)); at large times the probabilitiy is vanishing.

The number of ejected electrons per unit area in the time interval dt is wtotvrdt, where vr is
their radial velocity (the wavefunction is normalized to the unit volume; actually, it should be
normalized to a volume of the order of the atomic dimensions, in accordance with the quasi-
classical behaviour of the ejected (free) electron)); therefore, the total flux of ejected electrons is
obtained by integrating wtotvr from t = τ to infinity; it is easy to see that the integral

∫∞

τ
dtwtot

may be approximated by ≃ t0/B for large values of the coefficient B. The total probability wtot
given by equations (18) and (19) is represented schematically in Fig. 1.

The above calculations may apply to atom ionization in electromagnetic radiation; with a suitable
change in the numerical estimations similar calculations can be made for radiation-induced proton
emission from atomic nuclei or ion emission from molecules, atomic clusters; in general, by a
suitable modification of the charge and mass, such calculations can be performed also for the
general process of fragmentation (dissociation) of bound assemblies of charges. The calculations
can be extended to multiple ionization, involving also the dynamics of the rest of the assembly.[15]-
[17]

The probability wtot (which can be viewed as the transmission coefficient through the potential
barrier; we can check that wtot < 1) is a function of ξ(ωt − sinωt); for higher-intensity radia-
tion (increasing ξ) the emission of the charge is faster and in the time interval τ < t < t0 =
(β2a/4ZaH)

1/6τ the probability increases (equation (42)).

An interesting question refers to high-intensity radiation, in the so-called relativistic regime, where
η ≫ 1. As long as the bound state of the charge subsists, the motion is, practically, non-
relativistic; this means that the electromagnetic momentum p is sufficiently large to reduce to
a large extent the contribution qA/c, such that the velocity is small; the above non-relativistic
formalism may be applied. However, this situation lasts a very short time (since ξ ≫ 1); the barrier
is penetrated very rapidly (practically the barrier may be neglected for high-intensity radiation),
and the charge is injected in the high-intensity radiation, where it is rapidly accelerated up to
relativistic velocities.[18, 19]

Static field. The above calculations can be applied to a static uniform electric field E derived
from a vector potential A = −cEt. The wavefunction is

ψ = e−
iq2E2t3

6~m e
iqt
~
Ere−

iqt2

2~m
Epχ , (44)
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where χ satisfies the Schrodinger equation

i~
∂χ

∂t
=

1

2m
p2χ+ Ṽ (r)χ (45)

with the transformed potential given by

Ṽ (r) =

[
e

qt2

2m
EgradV (r)

]
. (46)

It is easy to see that the fragmentation occurs in the time interval

τ =

√
2ma

qE
(47)

and the emission probability is given by e−γ , where

γ =
qEt2

m

√
2Z

aaH
cos θ +

√
2a

aH
β (48)

and

cos θ > cos θ0 = −βma
qEt2

√
a

ZaH
. (49)

For τ < t < t0 = (β2a/4ZaH)
1/4τ the emission proceeds in all directions, while for t > t0 it occurs

mainly in the forward direction. The total probability is

wtot =
m

qEt2

√
2aaH
Z

sinh

(
qEt2

m

√
2Z

aaH

)
e−

√
2aβ/aH , τ < t < t0 (50)

and

wtot ≃
m

qEt2

√
aaH
2Z

[
1− e

−
qEt2

m

√

2Z
aaH

−
√
2aβ/aH

]
, t > t0 ; (51)

the emission time is of the order t0. For the static field the parameter η = qA/mc2 becomes
η =

√
2qEa/mc2(t/τ).

Low-intensity radiation. If ξ ≪ 1, as in the case of low-intensity radiation, or low static fields
(or large dimensions of the assembly), the fragmentation occurs in a long time τ . During this
time the radiation field may oscillate many times. The dynamics of the charge is governed by
the transformed potential Ṽ (r) given by equation (35). After each time interval τ the charge

may “recollide” with the rest of the assembly, and the action of the potential Ṽ (r) is resumed

each time.[20]-[22] We can see that the terms of the form sinn ωt in the potential Ṽ (r) generate
multiple-photon absorption and, on disexcitation, emission of higher-order harmonics.

Scattering. The wavefunction given by equation (28) is used sometimes for charge scattering; this
means that the scattering process is embedded in the radiation, which is not a realistic situation;
the asymptotic momenta p = mv+qA/c include the field. In fact, the correct approach would start
with the hamiltonian p2/2m − qrE and consider the potential −qrE as the scattering potential
(confined to a finite region). Nevertheless, let us consider first V (r) = 0, i.e. scattering off
radiation only. The incident charge has the wavefunction ψi ∼ eikr at z → −∞ and t → −∞
and acquires a wavefunction χ ∼ eikf r at z → ∞ and t → ∞, ki = kf = k, where r = (x, y, z)
and the scattering is concentrated in a region (x, y, z) of the order d (elastic scattering; inelastic
scattering is practically inobservable); the order of magnitude of d should be as small as possible,
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e.g. a few radiation wavelengths. The transition probability is given by |(ψi, ψ)|2, where ψ is
given by equation (28) with χ given here. First we note that in order to see the structure of
the scattering the projectile wavelength must be comparable with the radiation wavelength; this
makes the projectile to be treated in the quasi-classical approximation, which allows one to use
r = vt in the transition probability, where v is the projectile velocity; therefore, we limit ourselves
to forward scattering. Similarly, the r-integration may be performed along the trajectory of the
projectile with a small cross-section of the order of the projectile wavelength; this means practically
an integration over the length l along the trajectory, which permits in fact the use of t instead
of l. Then we note that in spite of the smallness of the parameetr ξ the exponents in ψ vary
rapidly over the scattering region, which shows that the transition probability is small. The most
important contribution comes from t ∼ r ∼ l ∼ 0, which makes us to retain only the exponent
∼ iq

m~ω2 sinωt ·E0p (where p is ~kf ); here we may use the expansion given by equation (33); we get
diffraction maxima at scattering angles given by kθn = ωn/v, where v is the projectile velocity;
the amplitudes of the transition probability are proportional to Jn(dkξ). The diffraction maxima
require emission of photons, which restricts the labels n to positive values. This scattering process
amounts to an infinite summation of the Born approximation in all orders.

If an additional scattering potential V (r) is present, it is easy to see that the wavefunction χ is
proportional to χ ∼ eikf rf , where f is the scattering amplitude due to the potential V (r); it
follows that the cross-section for a given diffraction maximum is given by |Jn|2 σV , where σV is
the cross-section due to the potential V (r); this is known as the Kroll-Watson formula.[23] We
emphasize that the conservation laws of momentum (and energy for inelastic scattering) are very
approximately satisfied in fact, due to the restricton of the range of integration. Moreover, the
emission-photons scattering would mean an unphysical spontaneous release of energy.

Concluding remarks. The "dipole" hamiltonian and the "standard" non-relativistic hamilto-
nian of charges in electromagnetic radiation are derived from the mechanical action. Making use of
suitable unitary transformations of the Kramers-Henninger type, it is shown that they are equiv-
alent. A unitary transformation is introduced which takes into account the modifications brought
about by the electromagnetic radiation upon the original interaction of the charges (dressed inter-
action). It is shown that the radiation favours the fragmentation of the bound states of charges,
setting them free to penetrate a possible potential barrier. Explicit calculations are presented for
a Coulomb potential barrier and the emission probability and emission time are calculated. Ap-
plications are discussed to ionization of atoms and molecules, radiation-induced proton emission
from atomic nuclei, ion emission from large molecules or fragmentation of atomic clusters.

Finally, it is worth noting the peculiar character of the "quasi-classical" tunneling, used to estimate
the probability emission of a charge from a bound state.[5, 6] In the "quasi-classical" tunneling
the penetration of the potential barrier proceeds when the interaction energy (p − qA/c)2/2m
with p = 0 equals the binding energy −Eb (Eb > 0); this happens at imaginary times. For in-
stance, for a static field q2E2t2i /2m = −Eb, hence ti = i(2mEb)

1/2/qE. The wavefunction acquires

the factor e−
i
~

∫ ti dt(q2E2t2/2m), hence the decay probability e−(2mEb)
3/2/3~mqE , with the character-

istic 1/E-dependence in the exponent; the quasi-classical behaviour is valid for small E (small
probability). This is a crude approximation which neglect essential features of the dynamics.

A related procedure for estimating such probabilities in static fields is the following. The en-
ergy −rE is viewed as a potential barrier for the bound-state energy −Eb; then, the momentum
is p = i

√
2m(−xE + Eb), where x denotes the direction along the field; the evaluation of the

integral −(2/~)
∫ Eb/E

0
dxp gives the exponent ∼ const/E. The difficulty is that this is not a tun-

neling problem, since for x → −∞ the momentum p =
√

2m(xE − Eb) is not real (similarly,
the imaginary-time tunneling described above is not a tunneling problem for bound charges); it
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is a problem involving the charge motion in the electric field. If the electric field is sufficiently
strong we may neglect the atomic interaction, and the solution is a wavefunction ψf of the Airy
type, as it is well known. We may estimate the transition probability from the original atomic
state described by a wavefunction ψb (corresponding to a bound state) to the final state described
by ψf (practically a free, extended state) by |(ψf , ψb)2|. If the interaction is switched on slowly
(adiabatically), there is no transition; if the interaction is switched on rapidly, there are transi-
tions; usually, their probabilities are small, since the scalar product is between a very localized
state and a very extended one. In any case, this is not the problem we deal with in the case
of laser-matter interaction, where we are interested in transition probabilities produced at finite
times by an oscillating, or constant, field.
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