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Abstract

The Goeppert-Mayer and Kramers-Henneberger transformations are examined for a bound
charge in electromagnetic radiation in the non-relativistic approximation. It is shown that the
consistent inclusion of the initial conditions ensures the equivalence of the dipole hamiltonian
and the standard non-relativistic hamiltonian. These results offer the possibility of following
the time evolution of the charge wavefunction with both the structural interaction (which
ensures the bound state) and the interaction provided by the radiation. It is shown that after
a longer or shorter time (depending on the strength of the electric field) since switching on the
radiation the bound charges are set free; in these conditions the most energetic charges may
tunnel through a possible potential barrier (e.g., Coulomb barrier), or be rescattered, while
the remaining charges are rearranged and the process is resumed. This new picture is ap-
plied to the ionization of atoms with a Coulomb potential barrier. The results differ from the
well-known ionization probability obtained by "quasi-classical" tunneling through "classically
unavailable" non-stationary states (imaginary-time tunneling). Extension of the approach to
other applications involving radiation-induced charge emission from bound states is discussed,
like ionization of molecules, atomic clusters or proton emission from atomic nuclei. Results
for a static electric field are included.
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The investigation of the laser-matter interaction was focused since the beginning on the radiation-
induced atom ionization.[1, 2] Originally, the transitions between the atomic non-stationary states
have been approached by time-dependent perturbation theory. Keldysh[3] noticed that such an
approach implies a "quasi-classical" tunneling through states which are not allowed by the classical
dynamics.[4] Later, it was realized[5] that the tunneling formalism involves in fact a unitary
transformation known as the Kramers-Henneberger transformation.[6, 7] All these calculations
are of limited validity and imply necessarily simplifying approximations which affect the results.
Typically, they neglect the dynamics of the electrons inside the atoms in the presence of the
radiation field, which results in ionization probabilities proportional to e−const/E, where E is the
strength of the electric field[8]-[11] (this is a well-known result, valid also for static fields[4]). The
need of a time-evolving picture of radiation-induced atom ionization has been often emphasized.[12,
13]

We attempt here to avoid such drawbacks. First, we show that a consistent use of the unitary
transformations of the Goeppert-Mayer and Kramers-Henneberger type is needed in order to
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ensure the equivalence of the dipole hamiltonian with the standard non-relativistic hamiltonian;
in this equivalence the initial conditions play an essential role, a circumstance which offers the
opportunity to follow the time evolution of the wavefunction with both the structural interaction
(which may be responsible for the charge bound state) and the interaction caused by the radiation.
Second, it is shown that, after a lapse of time, the well-known radiation-dressed atomic interaction
resulting from the Kramers-Henneberger transformations may vanish, setting the electrons free to
attempt to penetrate a possible potential barrier associated with the ionization. This lapse of time
is short for high-intensity radiation and long for weak radiation fields. During the long time till the
tunneling may appear in weak fields, the electrons oscillate between non-stationary states, leading
to well-known multi-photon absorption and production of high-order electromagnetic harmonics.
During the tunneling, or the rescattering, the remaining electrons are rearranged and the process
is resumed. We apply this new picture to the ionization of atoms, assuming, for convenience,
(non-relativistic) single-electron states in the atomic mean-field and a Coulomb potential barrier.
The possibility of extension of the results to multiply-charged ions, ionization of large molecules,
atomic clusters, including correlation effects, or to proton emission from atomic nuclei is discussed.

To start with, we assume a charge q with mass m in the atomic potential V (r) in the presence of
an electric field E; in the non-relativistic approximation the dipole hamiltonion is

Hd = H0 − qrE , H0 =
1

2m
p2 + V (r) , (1)

where r denotes the relative position (with respect to the center-of-mass) and p is the charge
momentum. We assume that the electric field E is a radiation field; in the non-relativistic ap-
proximation we may limit ourselves to its time dependence; consequently, we assume a typical
component of the electric field of the form E = E0 sinωt, where ω is the radiation frequency
(linear polarization) and t denotes the time. We consider the associated Schrodinger equation
i~∂ψ/∂t = Hdψ and introduce the unitary transformation

ψ = e−
i

~ω
qrE0(cosωt−1)φ ; (2)

we note that ψ(t = 0) = φ(t = 0) and the interaction −qrE0 sinωt vanishes at t = 0. The
transformation given by equation (2) leads to

p → p̃ = e
i

~ω
qrE0(cos ωt−1)pe−

i
~ω

qrE0(cos ωt−1) = p− q

ω
E0(cosωt− 1) ; (3)

since we may view the electric field E as derived from the vector potential A = A0 cosωt, A0 =
cE0/ω, the above equation becomes

p̃ = p− q

c
A0(cosωt− 1) = p− q

c
(A−A0) (4)

and the transformed hamiltonian reads

H̃d = e
i

~ω
qrE0(cosωt−1)Hde

− i
~ω

qrE0(cos ωt−1) =
1

2m

[
p− q

c
(A−A0)

]2
+ V (r) , (5)

with the associated Schrodinger equation i~∂φ/∂t = H̃dφ; we recognize in equation (5) the stan-
dard non-relativistic hamiltonian with A−A0 instead of the usual A. The presence of the constant
A0 does no affect the classical equations of motion, and, of course, it does not affect the equations
of the electromagnetic radiation (it is a gauge transformation); however, we shall see shortly that
it has important effects on the quantum-mechanical dynamics of the charge. The transformation
given by equation (2) is known as the Goeppert-Mayer transformation.[14]
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Let us write

H̃d = H0 −
q

mc
(A−A0)p+

q2

2mc2
(A−A0)

2 (6)

and continue with the unitary transformation

φ = e−
iq2

8mc2~ω
A2

0
(sin 2ωt−8 sinωt+6ωt)e

iq

mc~ω
(sinωt−ωt)·A0pχ ; (7)

it leads to the Schrodinger equation

i~
∂χ

∂t
=

[
1

2m
p2 + Ṽ (r)

]
χ (8)

and the radiation-dressed atomic potential

Ṽ (r) = e−
q

mω2
(sinωt−ωt)·E0gradV (r) . (9)

Therefore, collecting all these transformations, the original wavefunction can be written as

ψ = e−
iq2

8m~ω3
E2

0
(sin 2ωt−8 sinωt+6ωt)e−

i
~ω

qrE0(cosωt−1)e
iq

m~ω2
(sinωt−ωt)·E0pχ ; (10)

we note that ψ(t = 0) = χ(t = 0) and the electromagnetic interaction vanishes at t = 0 both
in the original dipole hamiltonian Hd (−qrE0 sinωt |t=0= 0) and the standard non-relativistic
hamiltonian given by equation (6) ((A −A0) |t=0= A0(cosωt − 1) |t=0= 0); this establishes the
equivalence of the two hamiltonians.

The above unitary transformations are the well-known Kramers-Henneberger transformations,
including the radiation-dressed potential Ṽ (r);[5]-[7] the difference with respect to their usual
form consists in the introduction of the initial conditions, reflected in the presence of ωt in the
exponent sinωt − ωt in equation (10). Usually, this contribution is omitted; however, it is this
factor which ensures the equivalence of the transformed hamiltonians.

We proceed now to apply these results to the ionization of atoms; we assume that in the absence
of the radiation field the potential V (r) is the mean-field potential which generates atomic bound
single-electron states. Let us assume that the electric field E is directed along the z-axis; then,
equation (9) gives

Ṽ (x, y, z) = V − qE0

mω2 (sinωt− ωt)V1 +
q2E2

0

2m2ω4 (sinωt− ωt)2V2 + ... =

= V
(
x, y, z − qE0

mω2 (sinωt− ωt)
)

,

(11)

where V1 = ∂V/∂z, V2 = ∂2V/∂z2, ... . We can see that the potential Ṽ at the position of
the charge is the original potential V at coordinate z − (qE0/mω

2)(sinωt − ωt); it follows that
for a sufficiently long time this potential may vanish (due to the ωt-term). We introduce the
parameter ξ = qE0/mω

2a, where a is of the order of the dimension of the atom. We can see that
for ξ ≪ 1 the charge q (the electron) suffers for a long time the small oscillating effects of the
radiation while moving in the atomic potential; in these circumstances we may have multi-photon
absorption and emission of high-order harmonics, from terms of the form sinn ωt in Ṽ ; this is a
well-known effect;[15]-[18] we note that all these occur for weak fields (ξ ≪ 1). It is convenient to
write the parameter ξ as ξ = η(λ/a), where η = qA0/mc

2 and λ is the radiation wavelength; in
order to preserve the non-relativistic approximation we should have η ≪ 1. On the other hand,
for ξ ≫ 1, after a certain, short, lapse of time τ , the potential Ṽ at the position of the charge is
vanishing, and the charge is set free. The conditions ξ > 1 and η < 1 are satisfied for the radiation
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Figure 1: Schematic representation of the total tunneling probability wtot (in arbitray units) vs

time t for A≪ 1 ≪ B (the notations are defined in text).

intensity I in the range 1012w/cm2 < I < 1018w/cm2 for electrons in atoms (a = 10−8cm) and
optical radiation (ω = 1015s−1, λ ≃ 104cm). We can see that for moderate laser intensities the
parameter ξ is large (ξ ≃ 103 for I = 1018w/cm2). Under these circumstances the time τ is given
by

ξ(ωt− sinωτ) ≃ 1

6
ξ(ωτ)3 = 1 . (12)

To continue we use a simplified atomic model. In the lapse of time τ the electrons are set free; they
have momenta pn and kinetic energies εn = p2n/2m, where n is a generic notation for the electron
states; we may leave aside the orbital motion and denote by prn the radial momentum and by εrn
the radial energy. Let pr and εr = p2r/2m be the highest radial momentum and, respectively, the
highest radial energy; they correspond to the total momentum p and, respectively, total energy
ε = p2/2m (a degeneration may exist, which can be included). This electron may tunnel through
a possible (centrally-symmetric) potential barrier U(r) from r0 to r1, where U(r1) = εr.

1 The
relevant factors in the wavefunction ψ given by equation (10) are

e
− iq

m~ω2
(ωt−sinωt)E0 cos θ·(p1−p0)+

i
~

∫ r1
r0

dr·pr(r) , (13)

where pr(r) =
√

2m [εr − U(r)], p0,1 = p(r0,1) =
√
2m [ε− U(r0,1)] and θ is the angle between E0

and p. It is easy to see that p1 is always real; it follows that the tunneling probability (transmission
coefficient) is given by w = e−γ, where

γ = Aξ(ωt− sinωt) cos θ +B ,

A = 2a|p0|
~

, B = 2
~

∫ r1
r0
dr |pr(r)|

(14)

1This is not so for atoms, where the potential is reduced by radiation; the tunneling holds for charge ejection
from atomic nuclei.
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and |p0| =
√
2m [U(r0)− ε] and |pr(r)| =

√
2m [U(r)− εr]; this equation is valid for t > τ .

The estimation of the coefficients A and B depends on the atomic model and the potential barrier
U(r). Let us assume a Coulomb barrier U(r) = Zq2/r, where, for the sake of the generality, we
consider an ion with charge −Zq. The tunneling conditions r0 < r1 and |p0| real and positive lead
to the inequalities

εrεr0
Zq2

< εr <
Zq2

r0
, (15)

which imply εrε < (Zq2/r0)
2; this inequality shows that the tunneling occurs for peripheral

electrons ("valence" electrons), whose kinetic energy is sufficiently small, as in a hydrogen-like
model of atoms (or for Rydberg states); this is an expected result. In order to illustrate the
analytical calculations we use now a rather crude approximation which consists in neglecting
the kinetic energies in |p0| and |pr(r)| and setting r = a; this approximation (suggested by the
inequalities (15)) does not affect the qualitative conclusions described below; doing so, we get the
approximate expressions

A ≃ 2
√
2Za/aH , B ≃ 4Z

√
2q2/aHεr ≫ 1 (16)

for the coefficients A and B, where aH = ~
2/mq2 is the Bohr radius; we can see that, within

this approximation, the tunneling probability is dominated by the coefficient B (which does not
include the radiation field); if we use the localization energy εr = ~

2/ma2 for the kinetic energy
εr the coefficient B becomes B = 4

√
2Za/aH .

The motion proceeds along the path of the minimal phase variation, such that, in equation (14)
we have the condition γ > 0, i.e.,

cos θ > cos θ0 = − B

Aξ(ωt− sinωt)
; (17)

we can see that for τ < t < t0 = (B/A)1/3τ the ejection of the charge proceeds at all angles (since
B > A), while for t > t0 = (B/A)1/3τ it proceeds only at angles 0 < θ < θ0; for large times
θ0 → π/2 and the emission occurs mainly along the direction of the electric field, as expected. We
can define a total probability wtot by integrating over angle θ; we get

wtot =
2 sinh [Aξ(ωt− sinωt)]

Aξ(ωt− sinωt)
e−B , τ < t < t0 (18)

and

wtot =
1− e−Aξ(ωt−sinωt)−B

Aξ(ωt− sinωt)
, t > t0 ; (19)

we can see that the probability is dominated by the fast process of tunneling occurring in the
short time interval τ < t < t0 (equation (18)); at large times the probabilitiy is vanishing.

The number of ejected electrons per unit area in the time interval dt is wtotvrdt, where vr (= pr/m)
is their radial velocity (the wavefunction is normalized to the unit volume); therefore, the total
flux of ejected electrons is obtained by integrating wtotvr from t = τ to infinity; it is easy to see
that the integral

∫∞

τ
dtwtot may be approximated by ≃ t0/B for large values of the coefficient B.

The total probability wtot given by equations (18) and (19) is represented schematically in Fig. 1.
We can see that the radiation effect is included in the time t0 (time τ); for high radiation fields
(increasing ξ) the time t0 (time τ) and the emission flux decrease; for high-intensity radiation the
emission of high-order harmonics may be controlled by the very short time t0.
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After the time τ one or more electrons may tunnel (together or sequentially), leading to multiply-
charged ions; indeed, the Kramers-Henninger transformations can be applied straghtforwardly to
several interacting charges in radiation field (the corresponding wavefunction must be properly
symmetrized). However, when the tunneling process starts the electronic core suffers a reconfigu-
ration (rearrangement) process and the potential V (r) is modified; this is the well-known process
of core "shake-up" (or core excitation).[17]-[19] As a consequence of this reconfiguration process,
the condition of setting the electrons free given by equation (11) is not valid anymore; a new
bound state is formed and a new transformation process begins for the modified potential V (r).

The tunneling probability w given above is a transmission coefficient (we can check that w < 1);
with probability 1− w the electron is reflected from the potential barrier; in these conditions the
electronic core is "shaken-up" and, if the radiation field is weak, the electron resumes its process of
multi-photon absorption and emission of high-order harmonics, untill it may be rescattered back
to the atomic core; these are the well-known recollision processes.[15]-[18]

We note that the above calculations are for linearly polarized radiation; it is easy to see that
similar calculations can be done for circular (or elliptical) polarization.

The probability wtot is a function of ξ(ωt − sinωt); for higher-intensity radiation (increasing ξ)
the emission of the charge is faster; in the time interval τ < t < t0 = (B/A)1/3τ the probability
increases (equation (18)), but the total flux decreases, as a consequence of decreasing t0. An
interesting question arises here, related to very high-intensity radiation in the so-called relativistic
regime, where η ≫ 1. As long as the bound state of the charge subsists, the motion is, practically,
non-relativistic; this means that the electromagnetic momentum p is sufficiently large to reduce
to a large extent the contribution qA/c, such that the velocity is small; the above non-relativistic
formalism may be applied. However, this situation lasts a very short time (since ξ ≫ 1); the
barrier may be penetrated very rapidly (practically the barrier may be neglected for extremely
high-intensity radiation), and the charge is injected in the high-intensity radiation, where it is
rapidly accelerated up to relativistic velocities.[21]-[23]

Finally, we include here similar calculations for a static uniform electric field E, which may be
viewed as being derived from a vector potential A = −cEt. The wavefunction is

ψ = e−
iq2E2t3

6~m e
iqt

~
Ere−

iqt2

2~m
Epχ , (20)

where χ satisfies the Schrodinger equation

i~
∂χ

∂t
=

1

2m
p2χ+ Ṽ (r)χ (21)

with the transformed potential given by

Ṽ (r) = e
qt2

2m
EgradV (r) . (22)

It is easy to see that the dissociation occurs in the time interval

τ =

√
2ma

qE
(23)

and the tunneling probability is given by e−γ, where

γ = A(t/τ)2 cos θ +B (24)
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and

cos θ > cos θ0 = − B

A(t/τ)2
. (25)

For τ < t < t0 = (B/A)1/2τ the emission proceeds in all directions, while for t > t0 it occurs
mainly in the forward direction. The total probability is

wtot =
2 sinh [A(t/τ)2]

A(t/τ)2
e−B , τ < t < t0 (26)

and

wtot =
1− e−A(t/τ)2−B

A(t/τ)2
, t > t0 . (27)

We can see that these analytical expressions for the tuneling probability differ from the usual
expression of the from e−const/E . The "relativistic" parameter η may be cast, in this case, in the
form η =

√
2qEa/mc2(t/τ).

In conclusion, we may say that by means of a suitable unitary transformation of the Goeppert-
Mayer type it is shown that the dipole hamiltonian and the standard non-relativistic hamiltonian of
charges in electromagnetic radiation are equivalent. The initial condition plays an important role
in this equivalence, which implies, in unitary transformations of the Kramers-Henneberger type, a
gauge-like contribution to the phase of the wavefunction which may have physical consequences;
although this effect may be related to the well-known Aharonov-Bohm effect, it seems more likely
that both effects originate in the non-locality of the wavefunction. Using unitary transformations
of the Kramers-Henneberger-type it is shown that the radiation-dressed structural interaction
(which may be responsible of the charges bound state) favours the dissociation of the bound state,
which may lead to ionization, possibly by tunneling. The atom ionization probability is given
and explicitly estimated in a simplified atomic model with a Coulomb potential barrier. The
new picture of atomic ionization described in this paper implies an explicit time evolution of the
wavefunction with both structural and radiation interaction, which exhibits different behaviour
at different stages: in time τ after turning-on the radiation the bound charges are set, practically,
free; in the next time interval till t0 the tunneling may occur, followed by an ionization probability
which becomes extinct for long times. The times τ and t0 are explicitly estimated.

The approach presented here can be extended to the ionization of molecules[24, 25] or atomic
clusters,[26] or to proton emission from atomic nuclei,[27] or even ion emission from molecules.
For electrons in atoms the conditions of ionization and non-relativsitic approximation imply a
radiation intensity in the range 1012w/cm2 < I < 1018w/cm2, for atomic dimensions of the
order a = 10−8cm and optical radiation with frequency ω = 1015s−1; similar conditions lead to
108w/cm2 < I < 1024w/cm2 for proton emission from atomic nuclei and 1018w/cm2 < I/A2 <
1024w/cm2 for ion emission from molecules, where A is the mass number of the ion.
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