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Abstract

The spherical model of a ferromagnet is briefly reviewed.

The energy of the Ising ferromagnet is given by

1
E = _5‘] Z Hoxfyr (1)

(r.r’)

where J is a coupling constant and p, = £1 are spin variables on lattice sites defined by r. The
question would be that of computing the partition function

Z = exp (;K > urur/) : (2)
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where the summation extends over all distinct spin configurations and K = J/T, T being the
temperature. For a one-dimensional lattice the partition function is easily computed by iterating
a transfer matrix;[1] for two-dimensional lattices the partition functions have been computed by
algebraic methods.[2] The Ising model has no critical point in one dimension, it has one, however,
in two dimensions. For three-dimensional lattices the partition function could not have been
computed as yet. The spherical model has been introduced|[3] as an approximation to the Ising
model, and it has been shown that it does not exhibit a critical point in one and two dimensions,
but it has one in three dimensions. The spherical model is presented in the following, in a slightly
different manner than one usually does.

The Fourier transform of the spin variables

M = e (3)
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Mr_\/ﬁzk:e Mk Mk_\/ﬁzr:e

where the summation over k is extended over the first Brillouin zone, allows one to recast the
partition function into

1

7= % e K09 | 0
{pe} k

where

e (k) = 25: S ()
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d being the nearest-neighbours vectors. The Fourier transform py given by (3) may be viewed as
a sum of two scalar products

e =C(k)-p+iS(k) - p (6)
where
C(k) = (coskry,coskry,...) , S(k)= (sinkry,sinkry,...)
(7)
1
Bno= ﬁ(ﬂruﬂrw”') )
such that

1c]* = C2(k) cos® o (k, ) + 5%(k) cos® 0 (k, ) - (8)

The partition function becomes then

7 =Y esp { 52 0 [C200 e (k) + 5200 00 )] | o
with
C2(k) = ZCOSZ kr = ;N (1 + 251(5) ;
’ ) (10)
) 1
S*(k) = > sin’kr= §N (1 - Z5ks> ’

s denoting certain special points in the Brillouin zone. For square and cubic lattices, for example,
s =0,s = m, where 7 stands for (7, 7,...). The partition function is therefore rewritten as

Zexp{ KNZ {cos o (k, p) + cos? 0 (k, u)}}
" (11)
-exp[ KNZ cosgpsu)] ,
where the prime over summation means all k except s. It is easy to see that all C(k) and S(k)
are orthogonal to each other, with S(s) = 0. One may choose therefore the planes (C(k), S(k))

and (C(0),C(7)) and denote by p(k, p) the projection of g onto the plane (C(k), S(k)) and by
a (k, p) the angle between p(k, u) and C(k), such that

cosp (k, ) = p(k, p) cosar (k, ) , cost (k, ) = p(k, p)sine (k, p) ; (12)
similarly
cos (0, ) = ps(p) cosas () -, cosp(m, ) = ps(p) sin s () (13)

We note that C(0) = (1,1,...) corresponds to a ferromagnetically ordered p, while C(mw) =
(1,—1,...) corresponds to an antiferromagnetically ordered . The partition function may again
be rewritten as

Zﬂ:eXp{iKNz;:s(k)f (k“u,)} .

- exp BKN& (0) p2 () cos 2ax, (u)] ,
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where use has been made of € (7) = —¢(0).

The spherical model consists in approximating the vectors g in (14) on the hypercube with 2V
vortices by a continous variable on a hypersphere of radius unit; obviously, this aproximation is
not valid at low temperatures. The spherical approximation amounts to replacing « (k, ) by

o (k) € (0,27) (and a, (1) by o, € (0,27)), p(k, 12) by p(k) € (0,00) (and py() by ps € (0, 50)),
and to replacing the sum in (14) by integration over these continuous variables subject to the
condition

iPQ(k) = in(k) =1 (15)

since the k’s get correlated by this condition a factor (N — 1)¥~! should be included in front of
the integral, representing how many k’s are counted how many times by integration; in addition,
another factor 2% /7N =1 should also be included, as a consequence of passing from the summation
to the integration. The partition function becomes now

/

7 = 2 (Z)N_l (N =D [/OOO dp (k) - p (k) - /OQW da (k)} '

T k
" 1 /
) (Zp2(k) - 1) -exp{4KNZs(k) p? (k)} . (16)
Kk Kk
0o 27 1 5
/ dps - ps - dog- exp {2KN5 (0) p5 cos 20(8}
0 0
Introducing r, = p*(k), rs = p?,
1 2

1
I(rs) = 2 ) dos - exp {QKNS (0) 5 cos 2as] , (17)

and the Fourier representation of the d-function one obtains
R T S Ty L N
(2m)° J-1 VT —u?
! 0 1
H/ dry exp { [KNa(k) — iw} rk} : (18)
o J0 4

-/Ooo drg exp { BKN&(O)U — iw} 7‘5}

We introduce now the notations zx = ;K¢ (k), z, = £ Ke (0), perform the integration[4] over 7y
and 7y,

00 1

/0 dryexp {[Nzx —iw| ¢} = N —iw (19)
introduce also w = —iz, and get finally
(—1)N 1 1
7 = 2Y(N -1 N_lz(-Q-/ duifdz-ez-
( ) (27)? -1 V1 —u?
(20)
! 1 1
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The integration over z, written as

! 1 1
dz - e - _/d-‘P(Z), 21
/ze l_k[Nz z-e (21)

k — 2 Nzu—z

where /
P(z)=2—-Y In(Naz—2) —In(Nzyu—z) (22)
Kk
is performed by steepest descent; one obtains straightforwardly (for large z)
/dz  e®®) 2 i\orNz - 2@ (23)
where z is given by
1 1
~ =1; (24)

N T z2— 2

the term corresponding to zs in (22) is irrelevant for z. The partition function can be written now
as
6Nz

N o (=D /O

(25)

! 1 1 1 1
11 ' / du : ;
ek — 2 J1 V1 —u? zu—z
the integral over u (practically irrelevant) can be approximated by —7/z (for large z), so that one
obtains

1)N
7 =N -1y 26
V-l NNlHZ_Z (26)
or, keeping only the relevant factors, [5]
1
Z =2Nel> . 27
Sl @)
The free energy is therefore given by
1
F=-ThhZ=-NTl2-NTz+T) In {2—4K5(k)] . (28)
K

and a critical point would appear from the vanishing of the logarithm argument (at least).

Since e(k) < £(0) the critical point can only appear for z = ;K¢e(0). Replacing the sum in (24) by
an integral one can see that the integral is singular in one and two dimensions, so that (24) can be
fulfilled for z # iK £(0). On the contrary, in three dimensions the integral is finite, so that there
is a certain value K above which (24) is no longer satisfied; the term corresponding to k = 0 has
to be kept therefore in the summation, and it is precisely this term which ensures the fulfilment
of (24). Consequently, in three dimensions there exists a critical temperature Tj corresponding to
Ky, a situation entirely similar to that encountered in the Bose-Einstein condensation.

We specialize now to a simple cubic lattice, and approximate the energy (k) = 2 (cos k; + cos ky + cos k3)
by e(k) = 6 — k?%; introducing x = z — 29 = z — 3K/2 we can write (24) as

1 1
N——+—/ dk - k2
T+

o KRA (#)
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where kp = (672)'/3. The critical K, is given by

2N kb
K Jo

N = dk (30)
i.e. Ko = 2(6/7)"/3/m, and the integral in (29) is easily performed. Equation (29) gives x =
0 for K > Ko and 2 = (1/2)° K3 (1 — K/K,)® for K slightly below Ky. The energy E =
—J (0In Z/OK') can now be computed easily. It is continuous at Tp, and the heat capacity is also
continuous at this temperature. However, there is a discontinuity in the temperature slope of the
heat capacity at T, namely

d(Ty) =0, d(Ty) == [2+(2/m) (6/m)"* (37 = 1/2) | (N/Tp) . (31)

One can say, therefore, that the phase transition is of the third order, according to Ehrenfest’s
classification. The magnetization[5] is infinite for T' < Tj, and goes like (T — Ty) 2 above Ty. As
one can see the fluctuations in the magnetization are divergent at the critical point.
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