Journal of Theoretical Physics

On the spherical model of a ferromagnet
M. Apostol
Department of Theoretical Physics, Institute of Atomic Physics, Magurele-Bucharest MG-6, POBox MG-35, Romania email: apoma@theor1.ifa.ro

Abstract

The spherical model of a ferromagnet is briefly reviewed.

The energy of the Ising ferromagnet is given by

$$
\begin{equation*}
E=-\frac{1}{2} J \sum_{\left\langle\mathbf{r}, \mathbf{r}^{\prime}\right\rangle} \mu_{\mathbf{r}} \mu_{\mathbf{r}^{\prime}} \tag{1}
\end{equation*}
$$

where J is a coupling constant and $\mu_{\mathbf{r}}= \pm 1$ are spin variables on lattice sites defined by \mathbf{r}. The question would be that of computing the partition function

$$
\begin{equation*}
Z=\sum_{\left\{\mu_{\mathbf{r}}\right\}} \exp \left(\frac{1}{2} K \sum_{\left\langle\mathbf{r}, \mathbf{r}^{\prime}\right\rangle} \mu_{\mathbf{r}} \mu_{\mathbf{r}^{\prime}}\right) \tag{2}
\end{equation*}
$$

where the summation extends over all distinct spin configurations and $K=J / T, T$ being the temperature. For a one-dimensional lattice the partition function is easily computed by iterating a transfer matrix; [1] for two-dimensional lattices the partition functions have been computed by algebraic methods.[2] The Ising model has no critical point in one dimension, it has one, however, in two dimensions. For three-dimensional lattices the partition function could not have been computed as yet. The spherical model has been introduced[3] as an approximation to the Ising model, and it has been shown that it does not exhibit a critical point in one and two dimensions, but it has one in three dimensions. The spherical model is presented in the following, in a slightly different manner than one usually does.

The Fourier transform of the spin variables

$$
\begin{equation*}
\mu_{\mathbf{r}}=\frac{1}{\sqrt{N}} \sum_{\mathbf{k}} e^{-i \mathbf{k r}} \mu_{\mathbf{k}}, \quad \mu_{\mathbf{k}}=\frac{1}{\sqrt{N}} \sum_{\mathbf{r}} e^{i \mathbf{k r}} \mu_{\mathbf{r}}, \quad \mu_{-\mathbf{k}}^{*}=\mu_{\mathbf{k}} \tag{3}
\end{equation*}
$$

where the summation over \mathbf{k} is extended over the first Brillouin zone, allows one to recast the partition function into

$$
\begin{equation*}
Z=\sum_{\left\{\mu_{\mathbf{r}}\right\}} \exp \left[\frac{1}{2} K \sum_{\mathbf{k}} \varepsilon(\mathbf{k})\left|\mu_{\mathbf{k}}\right|^{2}\right] \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\varepsilon(\mathbf{k})=\sum_{\boldsymbol{\delta}} e^{i \mathbf{k} \boldsymbol{\delta}} \tag{5}
\end{equation*}
$$

$\boldsymbol{\delta}$ being the nearest-neighbours vectors. The Fourier transform $\mu_{\mathbf{k}}$ given by (3) may be viewed as a sum of two scalar products

$$
\begin{equation*}
\mu_{\mathbf{k}}=\mathbf{C}(\mathbf{k}) \cdot \boldsymbol{\mu}+i \mathbf{S}(\mathbf{k}) \cdot \boldsymbol{\mu}, \tag{6}
\end{equation*}
$$

where

$$
\left.\begin{array}{rl}
\mathbf{C}(\mathbf{k}) & =(\cos \mathbf{k r} \\
1 \tag{7}
\end{array}, \cos \mathbf{k} \mathbf{r}_{2}, \ldots\right) \quad, \quad \mathbf{S}(\mathbf{k})=\left(\sin \mathbf{k} \mathbf{r}_{1}, \sin \mathbf{k \mathbf { r } _ { 2 }}, \ldots\right),
$$

such that

$$
\begin{equation*}
\left|\mu_{\mathbf{k}}\right|^{2}=C^{2}(\mathbf{k}) \cos ^{2} \varphi(\mathbf{k}, \boldsymbol{\mu})+S^{2}(\mathbf{k}) \cos ^{2} \theta(\mathbf{k}, \boldsymbol{\mu}) . \tag{8}
\end{equation*}
$$

The partition function becomes then

$$
\begin{equation*}
Z=\sum_{\boldsymbol{\mu}} \exp \left\{\frac{1}{2} K \sum_{\mathbf{k}} \varepsilon(\mathbf{k})\left[C^{2}(\mathbf{k}) \cos ^{2} \varphi(\mathbf{k}, \boldsymbol{\mu})+S^{2}(\mathbf{k}) \cos ^{2} \theta(\mathbf{k}, \boldsymbol{\mu})\right]\right\} \tag{9}
\end{equation*}
$$

with

$$
\begin{align*}
& C^{2}(\mathbf{k})=\sum_{\mathbf{r}} \cos ^{2} \mathbf{k r}=\frac{1}{2} N\left(1+\sum_{\mathbf{s}} \delta_{\mathbf{k s}}\right), \\
& S^{2}(\mathbf{k})=\sum_{\mathbf{r}} \sin ^{2} \mathbf{k r}=\frac{1}{2} N\left(1-\sum_{\mathbf{s}} \delta_{\mathbf{k s}}\right), \tag{10}
\end{align*}
$$

\mathbf{s} denoting certain special points in the Brillouin zone. For square and cubic lattices, for example, $\mathbf{s}=0, \mathbf{s}=\boldsymbol{\pi}$, where $\boldsymbol{\pi}$ stands for (π, π, \ldots). The partition function is therefore rewritten as

$$
\begin{align*}
Z= & \sum_{\boldsymbol{\mu}} \exp \left\{\frac{1}{4} K N \sum_{\mathbf{k}}^{\prime} \varepsilon(\mathbf{k})\left[\cos ^{2} \varphi(\mathbf{k}, \boldsymbol{\mu})+\cos ^{2} \theta(\mathbf{k}, \boldsymbol{\mu})\right]\right\} . \\
& \cdot \exp \left[\frac{1}{2} K N \sum_{\mathbf{s}} \varepsilon(\mathbf{s}) \cos ^{2} \varphi(\mathbf{s}, \boldsymbol{\mu})\right], \tag{11}
\end{align*}
$$

where the prime over summation means all \mathbf{k} except \mathbf{s}. It is easy to see that all $\mathbf{C}(\mathbf{k})$ and $\mathbf{S}(\mathbf{k})$ are orthogonal to each other, with $\mathbf{S}(\mathbf{s})=0$. One may choose therefore the planes $(\mathbf{C}(\mathbf{k}), \mathbf{S}(\mathbf{k}))$ and $(\mathbf{C}(0), \mathbf{C}(\boldsymbol{\pi}))$ and denote by $\boldsymbol{\rho}(\mathbf{k}, \boldsymbol{\mu})$ the projection of $\boldsymbol{\mu}$ onto the plane $(\mathbf{C}(\mathbf{k}), \mathbf{S}(\mathbf{k}))$ and by $\alpha(\mathbf{k}, \boldsymbol{\mu})$ the angle between $\boldsymbol{\rho}(\mathbf{k}, \boldsymbol{\mu})$ and $\mathbf{C}(\mathbf{k})$, such that

$$
\begin{equation*}
\cos \varphi(\mathbf{k}, \boldsymbol{\mu})=\rho(\mathbf{k}, \boldsymbol{\mu}) \cos \alpha(\mathbf{k}, \boldsymbol{\mu}) \quad, \quad \cos \theta(\mathbf{k}, \boldsymbol{\mu})=\rho(\mathbf{k}, \boldsymbol{\mu}) \sin \alpha(\mathbf{k}, \boldsymbol{\mu}) \tag{12}
\end{equation*}
$$

similarly

$$
\begin{equation*}
\cos \varphi(0, \boldsymbol{\mu})=\rho_{s}(\boldsymbol{\mu}) \cos \alpha_{s}(\boldsymbol{\mu}), \quad \cos \varphi(\boldsymbol{\pi}, \boldsymbol{\mu})=\rho_{s}(\boldsymbol{\mu}) \sin \alpha_{s}(\boldsymbol{\mu}) \tag{13}
\end{equation*}
$$

We note that $\mathbf{C}(0)=(1,1, \ldots)$ corresponds to a ferromagnetically ordered $\boldsymbol{\mu}$, while $\mathbf{C}(\boldsymbol{\pi})=$ $(1,-1, \ldots)$ corresponds to an antiferromagnetically ordered $\boldsymbol{\mu}$. The partition function may again be rewritten as

$$
\begin{align*}
Z= & \sum_{\boldsymbol{\mu}} \exp \left\{\frac{1}{4} K N \sum_{\mathbf{k}}^{\prime} \varepsilon(\mathbf{k}) \rho^{2}(\mathbf{k}, \boldsymbol{\mu})\right\} \\
& \cdot \exp \left[\frac{1}{2} K N \varepsilon(0) \rho_{s}^{2}(\boldsymbol{\mu}) \cos 2 \alpha_{s}(\boldsymbol{\mu})\right], \tag{14}
\end{align*}
$$

where use has been made of $\varepsilon(\boldsymbol{\pi})=-\varepsilon(0)$.
The spherical model consists in approximating the vectors $\boldsymbol{\mu}$ in (14) on the hypercube with 2^{N} vortices by a continous variable on a hypersphere of radius unit; obviously, this aproximation is not valid at low temperatures. The spherical approximation amounts to replacing $\alpha(\mathbf{k}, \boldsymbol{\mu})$ by $\alpha(\mathbf{k}) \in(0,2 \pi)\left(\operatorname{and} \alpha_{s}(\boldsymbol{\mu})\right.$ by $\left.\alpha_{s} \in(0,2 \pi)\right), \rho(\mathbf{k}, \boldsymbol{\mu})$ by $\rho(\mathbf{k}) \in(0, \infty)\left(\right.$ and $\rho_{s}(\boldsymbol{\mu})$ by $\rho_{s} \in(0, \infty)$), and to replacing the sum in (14) by integration over these continuous variables subject to the condition

$$
\begin{equation*}
\sum_{\mathbf{k}}^{\prime \prime} \rho^{2}(\mathbf{k})=\sum_{\mathbf{k}}^{\prime} \rho^{2}(\mathbf{k})+\rho_{s}^{2}=1 \tag{15}
\end{equation*}
$$

since the k's get correlated by this condition a factor $(N-1)^{N-1}$ should be included in front of the integral, representing how many k's are counted how many times by integration; in addition, another factor $2^{N} / \pi^{N-1}$ should also be included, as a consequence of passing from the summation to the integration. The partition function becomes now

$$
\begin{align*}
Z= & 2\left(\frac{2}{\pi}\right)^{N-1}(N-1)^{N-1} \prod_{\mathbf{k}}^{\prime}\left[\int_{0}^{\infty} d \rho(\mathbf{k}) \cdot \rho(\mathbf{k}) \cdot \int_{0}^{2 \pi} d \alpha(\mathbf{k})\right] \cdot \\
& \cdot \delta\left(\sum_{\mathbf{k}}^{\prime \prime} \rho^{2}(\mathbf{k})-1\right) \cdot \exp \left\{\frac{1}{4} K N \sum_{\mathbf{k}}^{\prime} \varepsilon(\mathbf{k}) \rho^{2}(\mathbf{k})\right\} . \tag{16}\\
& \cdot \int_{0}^{\infty} d \rho_{s} \cdot \rho_{s} \cdot \int_{0}^{2 \pi} d \alpha_{s} \cdot \exp \left[\frac{1}{2} K N \varepsilon(0) \rho_{s}^{2} \cos 2 \alpha_{s}\right] .
\end{align*}
$$

Introducing $r_{\mathbf{k}}=\rho^{2}(\mathbf{k}), r_{s}=\rho_{s}^{2}$,

$$
\begin{equation*}
I\left(r_{s}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \alpha_{s} \cdot \exp \left[\frac{1}{2} K N \varepsilon(0) r_{s} \cos 2 \alpha_{s}\right] \tag{17}
\end{equation*}
$$

and the Fourier representation of the δ-function one obtains

$$
\begin{align*}
Z= & 2^{N}(N-1)^{N-1} \frac{2}{(2 \pi)^{2}} \int_{-1}^{1} d u \frac{1}{\sqrt{1-u^{2}}} \int d \omega \cdot e^{i \omega} . \\
& \cdot \prod_{\mathbf{k}}^{\prime} \int_{0}^{\infty} d r_{\mathbf{k}} \exp \left\{\left[\frac{1}{4} K N \varepsilon(\mathbf{k})-i \omega\right] r_{\mathbf{k}}\right\} \tag{18}\\
& \cdot \int_{0}^{\infty} d r_{s} \exp \left\{\left[\frac{1}{2} K N \varepsilon(0) u-i \omega\right] r_{s}\right\} .
\end{align*}
$$

We introduce now the notations $z_{\mathbf{k}}=\frac{1}{4} K \varepsilon(\mathbf{k}), z_{s}=\frac{1}{2} K \varepsilon(0)$, perform the integration[4] over $r_{\mathbf{k}}$ and r_{s},

$$
\begin{equation*}
\int_{0}^{\infty} d r_{\mathbf{k}} \exp \left\{\left[N z_{\mathbf{k}}-i \omega\right] r_{\mathbf{k}}\right\}=-\frac{1}{N z_{\mathbf{k}}-i \omega} \tag{19}
\end{equation*}
$$

introduce also $\omega=-i z$, and get finally

$$
\begin{align*}
Z= & 2^{N}(N-1)^{N-1} \frac{i(-1)^{N}}{(2 \pi)^{2}} \cdot 2 \cdot \int_{-1}^{1} d u \frac{1}{\sqrt{1-u^{2}}} \int d z \cdot e^{z} . \tag{20}\\
& \cdot \prod_{\mathbf{k}}^{\prime} \frac{1}{N z_{\mathbf{k}}-z} \frac{1}{N z_{s} u-z} .
\end{align*}
$$

The integration over z, written as

$$
\begin{equation*}
\int d z \cdot e^{z} \cdot \prod_{\mathbf{k}}^{\prime} \frac{1}{N z_{\mathbf{k}}-z} \frac{1}{N z_{s} u-z}=\int d z \cdot e^{\Phi(z)} \tag{21}
\end{equation*}
$$

where

$$
\begin{equation*}
\Phi(z)=z-\sum_{\mathbf{k}}^{\prime} \ln \left(N z_{\mathbf{k}}-z\right)-\ln \left(N z_{s} u-z\right) \tag{22}
\end{equation*}
$$

is performed by steepest descent; one obtains straightforwardly (for large z)

$$
\begin{equation*}
\int d z \cdot e^{\Phi(z)} \cong i \sqrt{2 \pi N} z \cdot e^{\Phi(z)} \tag{23}
\end{equation*}
$$

where z is given by

$$
\begin{equation*}
\frac{1}{N} \sum_{\mathbf{k}} \frac{1}{z-z_{\mathbf{k}}}=1 ; \tag{24}
\end{equation*}
$$

the term corresponding to z_{s} in (22) is irrelevant for z. The partition function can be written now as

$$
\begin{align*}
Z= & 2^{N}(N-1)^{N-1} \frac{(-1)^{N-1}}{(2 \pi)^{2}} \cdot 2 \cdot \sqrt{2 \pi N} \cdot z \frac{e^{N z}}{N^{N-1}} \tag{25}\\
& \cdot \prod_{\mathbf{k}}^{\prime} \frac{1}{z_{\mathbf{k}}-z} \cdot \int_{-1}^{1} d u \frac{1}{\sqrt{1-u^{2}}} \cdot \frac{1}{z_{s} u-z}
\end{align*}
$$

the integral over u (practically irrelevant) can be approximated by $-\pi / z$ (for large z), so that one obtains

$$
\begin{equation*}
Z=2^{N}(N-1)^{N-1} \frac{(-1)^{N}}{\sqrt{2 \pi}} \sqrt{N} \frac{e^{N z}}{N^{N-1}} \prod_{\mathbf{k}}^{\prime} \frac{1}{z_{\mathbf{k}}-z} \tag{26}
\end{equation*}
$$

or, keeping only the relevant factors,[5]

$$
\begin{equation*}
Z=2^{N} e^{N z} \prod_{\mathbf{k}} \frac{1}{z-z_{\mathbf{k}}} \tag{27}
\end{equation*}
$$

The free energy is therefore given by

$$
\begin{equation*}
F=-T \ln Z=-N T \ln 2-N T z+T \sum_{\mathbf{k}} \ln \left[z-\frac{1}{4} K \varepsilon(\mathbf{k})\right] . \tag{28}
\end{equation*}
$$

and a critical point would appear from the vanishing of the logarithm argument (at least).
Since $\varepsilon(\mathbf{k})<\varepsilon(0)$ the critical point can only appear for $z=\frac{1}{4} K \varepsilon(0)$. Replacing the sum in (24) by an integral one can see that the integral is singular in one and two dimensions, so that (24) can be fulfilled for $z \neq \frac{1}{4} K \varepsilon(0)$. On the contrary, in three dimensions the integral is finite, so that there is a certain value K_{0} above which (24) is no longer satisfied; the term corresponding to $\mathbf{k}=0$ has to be kept therefore in the summation, and it is precisely this term which ensures the fulfilment of (24). Consequently, in three dimensions there exists a critical temperature T_{0} corresponding to K_{0}, a situation entirely similar to that encountered in the Bose-Einstein condensation.

We specialize now to a simple cubic lattice, and approximate the energy $\varepsilon(\mathbf{k})=2\left(\cos k_{1}+\cos k_{2}+\cos k_{3}\right)$ by $\varepsilon(\mathbf{k})=6-k^{2}$; introducing $x=z-z_{0}=z-3 K / 2$ we can write (24) as

$$
\begin{equation*}
N=\frac{1}{x}+\frac{N}{2 \pi^{2}} \int_{0}^{k_{D}} d k \cdot k^{2} \frac{1}{x+K k^{2} / 4} \tag{29}
\end{equation*}
$$

where $k_{D}=\left(6 \pi^{2}\right)^{1 / 3}$. The critical K_{0} is given by

$$
\begin{equation*}
N=\frac{2 N}{\pi^{2} K} \int_{0}^{k_{D}} d k \tag{30}
\end{equation*}
$$

i.e. $K_{0}=2(6 / \pi)^{1 / 3} / \pi$, and the integral in (29) is easily performed. Equation (29) gives $x=$ 0 for $K \geq K_{0}$ and $x=(\pi / 2)^{2} K_{0}^{3}\left(1-K / K_{0}\right)^{2}$ for K slightly below K_{0}. The energy $E=$ $-J(\partial \ln Z / \partial K)$ can now be computed easily. It is continuous at T_{0}, and the heat capacity is also continuous at this temperature. However, there is a discontinuity in the temperature slope of the heat capacity at T_{0}, namely

$$
\begin{equation*}
c^{\prime}\left(T_{0}^{-}\right)=0, \quad c^{\prime}\left(T_{0}^{+}\right)=-\left[2+(2 / \pi)(6 / \pi)^{1 / 3}\left(3 \pi^{2}-1 / 2\right)\right]\left(N / T_{0}\right) . \tag{31}
\end{equation*}
$$

One can say, therefore, that the phase transition is of the third order, according to Ehrenfest's classification. The magnetization[5] is infinite for $T \leq T_{0}$, and goes like $\left(T-T_{0}\right)^{-2}$ above T_{0}. As one can see the fluctuations in the magnetization are divergent at the critical point.

References

[1] H. A. Kramers and G. H. Wannier, Phys. Rev 60 252, 263 (1941).
[2] L. Onsager, Phys. Rev. 65117 (1944); see also C. Domb in Phase Transitions and Critical Phenomena, ed. by C. Domb and M. S. Green, Academic (1974), vol.3, p.357.
[3] T. H. Berlin and M. Kac, Phys. Rev. 86821 (1952); see also G. S. Joyce in Phase Transitions and Critical Phenomena, ed. by C. Domb and M. S. Green, Academic (1974), vol.2, p. 375.
[4] The integration over $r_{\mathbf{k}}$ can be performed to some upper cut-off with, practically, the same result, for the present discussion, as that given by (19); note that it is this integration by which the singularities appear in the partition function.
[5] In the presence of a magnetic field H an additional factor $\exp \left\{C^{2} N / 4\left[z-\frac{1}{4} K \varepsilon(0)\right]\right\}$ appears in the partition function, where $C=m H / T, m$ being the magnetic moment of the spin; note that the magnetization is given by $M=m(\partial \ln Z / \partial C)$ (and the energy is $E=-M H-J(\partial \ln Z / \partial K)$).

