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We consider a non-relativistic quantum electric charge e and mass m in the electromagnetic
radiation described by the vector potential A = A0 cos(ωt− kr) (linear polarization), where A0

is the amplitude and ω and k are the radiation frequency and, respectively, the wavevector; t and
r denote the time and, respectively, the position. Since the phase velocity of the non-relativistic
charge is much smaller than the speed of light c in vacuum (ω = ck), we may neglect the spatial
phase kr in comparison with the temporal phase ωt; consequently, the vector potential may be
approximated by A ≃ A0 cosωt. There exist two forms of the non-relativistic hamiltonian of the
charge in radiation; one is the standard non-relativistic hamiltonian

H =
1

2m
(p− e

c
A)2 + V (r) (1)

and another is the dipole hamiltonian

H =
1

2m
p2 − erE+ V (r) , (2)

where V (r) is a potential which does not depend on the time and E = E0 sinωt, E0 = ωA0/c, is
the electric field. These two hamiltonians lead to the same classical equations of motion and are
related by a gauge transformation. They differ from each other by the momentum p, which in
equation (1) includes the radiation contribution (p = mv + qA/c, where v is the velocity), while
in equation (2) it reduces to the mechanical contribution (p = mv). This difference generates two
distinct scattering processes.

First, we consider the scattering process immersed in radiation; the Schrodinger equation corre-
sponding to the hamiltonian given by equation (1) reads

i~
∂ψ

∂t
=

[
H0 −

e

mc
Ap+

e2

2mc2
A2 + V (r)

]
ψ , (3)

where H0 = p2/2m.1 For t → ∞ the potential V (r) is vanishing and we set the final "free"
wavefunction of the charge in radiation field

ψf =
1√
V
e−

ie2A2
0

8~mc2ω
(sin 2ωt+2ωt)+ ie

~mcω
A0pf sinωte−

i
~
Ef t+

i
~
pf r , (4)

1If we start with the dipole hamiltonian given by equation (2) we arrive at the Schrodinger equation (3) by the

Goeppert-Mayer transform[1] ψ̃ = e−
ierE0

~ω
cosωtψ, where ψ̃ is the wavefunction of the dipole hamiltonian and ψ is

the wavefunction of the standard non-relativistic hamiltonian; this phase factor is immaterial in the subsequent
calculations.
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where pf and Ef = p2f/2m are the momentum and, respectively, the energy of the final state and
V denotes the normalization volume. The state of the incident particle is the solution

ψi = ψ0
i −

i

~
e−

i
~
H0t

∫ t

−∞

dt
′

V (r)ψi (5)

of the Schrodinger equation (3) with interaction with the initial condition

ψ0
i =

1√
V
e−

ie2A2
0

8~mc2ω
(sin 2ωt+2ωt)+ ie

~mcω
A0pi sinωte−

i
~
Eit+

i
~
pir (6)

for t→ −∞; pi and Ei = p2i /2m are the initial momentum and, respectively, energy. Making use
of the interaction representation we get the transition amplitude

afi = − i

~

∫ +∞

−∞

dt(ψf , V (r)ψi) . (7)

In the Born approximation we may limit ourselves to ψi = ψ0
i ; we get

afi = − i

~

∫ +∞

−∞

dte
ie

~mcω
A0p sinωt− i

~
(Ei−Ef )t · 1

V

∫
drV (r)e

i
~
pr , (8)

where p = pi−pf is the transfer momentum (afi is the matrix element of the S-matrix). Making
use of the decomposition

eiz sinϕ =
+∞∑

n=−∞

Jn(z)e
inϕ (9)

the transition amplitude becomes

afi = −2πi

+∞∑

n=−∞

Jn(eA0p/~mcω)δ(Ef −Ei + n~ω) · 1

V

∫
drV (r)e

i
~
pr (10)

and the transition probability per unit time

wfi =
2π

~

+∞∑

n=−∞

J2
n(eA0p/~mcω)δ(Ef − Ei + n~ω)

∣∣∣∣
1

V

∫
drV (r)e

i
~
pr

∣∣∣∣
2

(11)

(by replacing δ2(Ef−Ei+n~ω) by (t/2π~)δ(Ef−Ei+n~ω), where t is the duration of the process).
The differential cross-section dσ is obtained by dividing wfidνf , where dνf = dpfV/(2π~)

3 is the

number of final states, to the incident current density vi |ψ0
i |

2
= vi/V , where vi = pi/m is the

velocity of the incident particle; for the n-photon exchange process we get

dσ =
2π

~vi
J2
n(eA0p/~mcω)δ(Ef − Ei + n~ω)

∣∣∣∣
∫
drV (r)e

i
~
pr

∣∣∣∣
2
d3pf

(2π~)3
(12)

and, after integration with respect to pf ,

dσ =
pf
pi
J2
n(eA0p/~mcω)dσB , (13)

where

dσB =

∣∣∣∣
m

2π~2

∫
drV (r)e

i
~
pr

∣∣∣∣
2

dΩ (14)
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is the Born cross-section; dΩ = 4π sin θdθ is the solid angle and θ is the scattering angle. Equation
(13) is known as the Kroll-Watson formula.[1, 2] We note that the cross-section includes both
emission (n > 0) and absoption (n < 0) of photons. The squared Bessel function J2

n(x) has a
maximum for x ≃ n (Debye approximation[4, 5]); i.e. for

θ2 ≃ n
~ω

Ei

(
2mcEi

eA0pi

− 1

)
(15)

(for small angles θ).

In the scattering experiments with focused laser beams the radiation is confined to a region F
and the asymptotic scattering states correspond to particles free of radiation. Therefore, in this
case it is convenient to start with the dipole hamiltonian given by equation (2); the final state is
described by the wavefunction

ψf =
1√
V
e−

i
~
Ef t+

i
~
pf r (16)

and the state of the incident particle is described by the wavefunction given by

ψi = ψ0
i −

i

~
e−

i
~
H0t

∫ t

−∞

dt
′

[
−erE0 sinωt

′

+ V (r)
]
ψi , (17)

where

ψ0
i =

1√
V
e−

i
~
Eit+

i
~
pir ; (18)

the transition amplitude reads

afi = − i

~

∫ +∞

−∞

dt [−e sinωt(ψf , rE0ψi) + (ψf , V (r)ψi)] . (19)

We limit ourselves to the Born approximation, which, for the radiation term is valid provided
edE0/(~

2/md2) ≪ 1, where d is the dimension of the region where the radiation is confined to;
the cross-section is given by

dσ =
pf
2pi

∣∣∣∣
me

2π~2

∫
dr · rE0e

i
~
pr

∣∣∣∣
2

dΩ + dσB , (20)

where pf is given by p2f/2m = p2i /2m± ~ω; we can see that the first term in equation (20) gives
the cross-section of the scattering with emission or absorption of one photon; higher-orders of the
Born approximation give cross-sections with emission or absorption of multiple photons. For a
large integration volume in equation (20) the cross-section has a maximum for cos θ = pi/pf , i.e.

θ ≃ ±
√
n~ω/Ei, where n is the number of absorbed or emitted photons.

It is worth noting a comment upon the S-matrix related to the potential U = −erE0 sinωt; the
S-matrix is

afi = − i

~

∫ +∞

−∞

dt(χf , e
i
~
H0tUe−

i
~
H0tχi) =

ie

~

∫ +∞

−∞

dt sinωt(χf , e
i
~
H0trE0e

−
i
~
H0tχi) , (21)

where χf = e
i
~
pf r and χi is the incoming wavefunction depending only on time; in the Born

approximation χi = e
i
~
pir. The scalar product can be computed in two ways; one by applying the

operator e−
i
~
H0t to the wavefunctions χi,f ,

(χf , e
i
~
H0trE0e

−
i
~
H0tχi) = e

i
~
(Ef−Ei)t(χf , rE0χi) , (22)
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another by using

e
i
~
H0trE0e

−
i
~
H0t = rE0 +

t

m
pE0 ; (23)

this second way leads to

(χf , e
i
~
H0trE0e

−
i
~
H0tχi) = (χf , rE0χi) +

t

m
(χf ,pE0χi) , (24)

which, in the Born approximation gives

(χf , e
i
~
H0trE0e

−
i
~
H0tχi) = (χf , rE0χi) . (25)

Equation (22) gives a transition amplitude

afi =
ie

~

∫ +∞

−∞

dt sinωte
i
~
(Ef−Ei)t(χf , rE0χi) , (26)

while equation (25) gives a vanishing transition amplitude

afi =
ie

~

∫ +∞

−∞

dt sinωt(χf , rE0χi) = 0 . (27)

For χi = e
i
~
pir and an infinite r-domain of integration equation (26) produces a derivative of a

delta function with the final result zero, as in equation (27). For a finite range of r-integration,
the results given by equations (26) and (27) differ. However, for a finite range of r-integration the
potential U should be continuously and differentiably continued outside the integration domain
(in particular for ensuring the self-adjointness of the operators), which makes equation (23) invalid
and, consequently, equation (25) too. In particular, we can see that the behaviour of the potential
U at the border of its definition domain is important for the scattering amplitude. Consequently,
the first procedure given by equation (22), is the correct one for computing the scattering amplitude
(for a finite domain of r-integration).

If edE0/(~
2/md2) > 1 the Born approximation is not valid anymore, though the quantum-

mechanical behaviour of the particle may be preserved in the scattering region, even for high
incident energies. The transition amplitude is

afi = − i

~

∫ +∞

−∞

dt(ψf , (U + V )ψi) , (28)

where

ψf =
1√
V
e−

i
~
Ef t+

i
~
pf r (29)

and ψi is the solution of the Schrodinger equation

i~
∂ψi

∂t
= (H0 + U + V )ψi , U = −erE0 sinωt (30)

with the initial condition

ψ0
i =

1√
V
e−

i
~
Eit+

i
~
pir . (31)

The interaction U can be removed from the hamiltonian by using the Goeppert-Mayer transform

ψi = e−
i
~

∫ t
−∞

dt
′

U(t
′

)φi = e−
ie
~ω

rE0 cosωtφi , (32)
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where the wavefunction φi satisfies the Schrodinger equation

i~
∂φi

∂t
=

[
1

2m
(p− e

c
A)2 + V

]
φi ; (33)

The momentum p in equation (33) includes the radiation contribution (p = mvi + eA/c); for an
energetic particle mvi ≫ eA/c, or Ei ≫ e2A2/2mc2; in addition we should have also 2mc2 ≫ Ei

(non-relativistic particles); in these conditions, we may neglect the contribution of the radiation
terms in equation (33); in addition we restrict ourselves to the first-order contribution in powers
of the potential V , such that we may use the approximation φi ≃ ψ0

i . The transition amplitude
given by equation (28) becomes

afi = − i
~

∫ +∞

−∞
dte

i
~
(Ef−Ei)t · 1

V

∫
dre

i
~
pr(U + V )e−

i
~

∫ t

−∞
dt

′

U(t
′

) =

=
∫ +∞

−∞
dte

i
~
(Ef−Ei)t · 1

V

∫
dre

i
~
pr ∂

∂t
e−

ie
~ω

rE0 cosωt+

− i
~

∫ +∞

−∞
dte

i
~
(Ef−Ei)t · 1

V

∫
dre

i
~
prV e−

ie
~ω

rE0 cos ωt ;

(34)

at this point we use the decomposition

eiz cosϕ =

+∞∑

n=−∞

inJn(z)e
inϕ (35)

and get

afi = −2π
+∞∑

n=−∞

(−i)n+1δ(Ef−Ei+n~ω)·
1

V

[
n~ω

∫
dre

i
~
prJn(erE0/~ω)−

∫
dre

i
~
prV (r)Jn(erE0/~ω)

]
;

(36)
the cross-section is

dσ =
+∞∑

n=−∞

pf
pi

( m

2π~2

)2
[
n~ω

∫
dre

i
~
prJn(erE0/~ω)−

∫
dre

i
~
prV (r)Jn(erE0/~ω)

]2
dΩ , (37)

where for each n the final momentum is given by p2f/2m = p2i /2m− n~ω. We can see in equation
(37) the multiple-photon scattering by the radiation field (first term in the bracket), the modifica-
tion of the Born scattering cross-section for the potential V (r) due to the presence of the radiation
and interference terms between radiation and potential scattering.

The argument of the Bessel functions in equation (37) varies rapidly over the domain of integration;
consequently, we may use the asymptotic behaviour of the Bessel functions for large values of the
argument. It is easy to see that the main contribution comes from p = ±eE0/ω, i.e. pi−pf cos θ =
±eE0 cosα/ω, where α is the angle between pi and E0. It is convenient to introduce the parameter
ξ = eE0/ωpi = eA0/cpi ≪ 1; we get 1−(pf/pi) cos θ = ±ξ cosα and, from the energy conservation,
pf = pi(1−n~ω/2Ei); it follows that the cross-section has maxima for θ2n ≃ ±2ξ cosα−n~ω/Ei >

0. The order of magnitude of the r-integrals in equation (37) is ≃
√

~ωd5/eE0. We can see that

in the limit ξ → 0, when the particle is quasi-classical, the maxima occur at θn = ±
√
n~ω/Ei,

which is the diffraction result (the magnitudes of the cross-section differ).[6]
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