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We consider a non-relativistic quantum electric charge e and mass m in the electromagnetic
radiation described by the vector potential A = A cos(wt — kr) (linear polarization), where A,
is the amplitude and w and k are the radiation frequency and, respectively, the wavevector; t and
r denote the time and, respectively, the position. Since the phase velocity of the non-relativistic
charge is much smaller than the speed of light ¢ in vacuum (w = ck), we may neglect the spatial
phase kr in comparison with the temporal phase wt; consequently, the vector potential may be
approximated by A ~ Agcoswt. There exist two forms of the non-relativistic hamiltonian of the
charge in radiation; one is the standard non-relativistic hamiltonian
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and another is the dipole hamiltonian
1
H= %pz —erE+V(r) , (2)

where V(r) is a potential which does not depend on the time and E = Ejsinwt, Eg = wA/c, is
the electric field. These two hamiltonians lead to the same classical equations of motion and are
related by a gauge transformation. They differ from each other by the momentum p, which in
equation (1) includes the radiation contribution (p = mv + gA /¢, where v is the velocity), while
in equation (2) it reduces to the mechanical contribution (p = mv). This difference generates two
distinct scattering processes.

First, we consider the scattering process immersed in radiation; the Schrodinger equation corre-
sponding to the hamiltonian given by equation (1) reads
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where Hy = p?/2m.! For t — oo the potential V(r) is vanishing and we set the final "free"
wavefunction of the charge in radiation field
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f we start with the dipole hamiltonian given by equation (2) we arrive at the Schrodinger equation (3) by the
Goeppert-Mayer transform|[1] ¢ = e~ "t o wie) where v is the wavefunction of the dipole hamiltonian and % is
the wavefunction of the standard non-relativistic hamiltonian; this phase factor is immaterial in the subsequent

calculations.




2 J. Theor. Phys.

where py and Ey = pfc /2m are the momentum and, respectively, the energy of the final state and
V' denotes the normalization volume. The state of the incident particle is the solution

. t
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of the Schrodinger equation (3) with interaction with the initial condition
]_ ze2A2 .
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for t — —oo; p; and E; = p?/2m are the initial momentum and, respectively, energy. Making use
of the interaction representation we get the transition amplitude
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In the Born approximation we may limit ourselves to 1; = 1?; we get
’i +oo ie A . i E —E 1 i
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where p = p; — py is the transfer momentum (ay; is the matrix element of the S-matrix). Making
use of the decomposition

zz sing _ Z J zngo (9)

the transition amplitude becomes
+o0 1 )
ap = —2mi Z Jn(eAop/hmcw)d(Er — E; + nhw) - % / drV (r)enPr (10)

and the transition probability per unit time
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(by replacing 6?(Ef — E;+nhw) by (t/27h)d(E;— E;+nhw), where t is the duration of the process).
The differential cross-section do is obtained by dividing wy;dv, where dvy = dp;V/(27h)? is the
number of final states, to the incident current density v; [¢0]° = v;/V, where v; = p;/m is the
velocity of the incident particle; for the n-photon exchange process we get
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do = o, J2(eAgp/hmew)d(Ef — E; + nhw) /drV( )eﬁ () (12)
and, after integration with respect to py,
do = %Jz(erp/hmcw)daB : (13)
where
m i 2
dO'B = W /drV(r)ehp df) (14)
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is the Born cross-section; df2 = 47 sin 6df is the solid angle and 6 is the scattering angle. Equation
(13) is known as the Kroll-Watson formula.[1, 2] We note that the cross-section includes both
emission (n > 0) and absoption (n < 0) of photons. The squared Bessel function J2(z) has a
maximum for z ~ n (Debye approximation|4, 5]); i.e. for

omckE,
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(for small angles 6).

In the scattering experiments with focused laser beams the radiation is confined to a region F
and the asymptotic scattering states correspond to particles free of radiation. Therefore, in this
case it is convenient to start with the dipole hamiltonian given by equation (2); the final state is

described by the wavefunction

wf — Lef%EftJr%pfr (16)
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and the state of the incident particle is described by the wavefunction given by

. ¢
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where 1
¢? _ _e—%Eit—i-%pir : (18)
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the transition amplitude reads

i [T )
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We limit ourselves to the Born approximation, which, for the radiation term is valid provided
edEy/(h?/md?*) < 1, where d is the dimension of the region where the radiation is confined to;
the cross-section is given by

2
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where py is given by p?/Qm = p?/2m =+ hw; we can see that the first term in equation (20) gives
the cross-section of the scattering with emission or absorption of one photon; higher-orders of the
Born approximation give cross-sections with emission or absorption of multiple photons. For a
large integration volume in equation (20) the cross-section has a maximum for cos @ = p;/py, i.e.
0 ~ ++/nhw/E;, where n is the number of absorbed or emitted photons.

It is worth noting a comment upon the S-matrix related to the potential U = —erEgsinwt; the
S-matrix is

. +m . +w
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where x5 = enPT and X; is the incoming wavefunction depending only on time; in the Born

approximation x; = e#PiT The scalar product can be computed in two ways; one by applying the
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another by using

entlotyEoe~nflot — vE, + EPEO : (23)
this second way leads to
L Hot —LiHot t
Ocpy en ™ rEoe™n70%G) = (xr, 1Eoxi) + — (X7, PEoXi) (24)
which, in the Born approximation gives
(xp e rBoe 0y, = (g TBox) - (25)
Equation (22) gives a transition amplitude
ie [t (B~ E)t
agi =+ dtsinwter ™ =V (xp rEox;) (26)
while equation (25) gives a vanishing transition amplitude
ie [T
aji =~ dtsinwt(x s, rEox;) =0 . (27)

For x; = e#P and an infinite r-domain of integration equation (26) produces a derivative of a
delta function with the final result zero, as in equation (27). For a finite range of r-integration,
the results given by equations (26) and (27) differ. However, for a finite range of r-integration the
potential U should be continuously and differentiably continued outside the integration domain
(in particular for ensuring the self-adjointness of the operators), which makes equation (23) invalid
and, consequently, equation (25) too. In particular, we can see that the behaviour of the potential
U at the border of its definition domain is important for the scattering amplitude. Consequently,
the first procedure given by equation (22), is the correct one for computing the scattering amplitude
(for a finite domain of r-integration).

If edEy/(h*/md?) > 1 the Born approximation is not valid anymore, though the quantum-
mechanical behaviour of the particle may be preserved in the scattering region, even for high
incident energies. The transition amplitude is

o= [ o, W) (23)

where ]
wf _ _ef%E'ftJr%pfr (29)

v

and 1); is the solution of the Schrodinger equation

oY, .
ih ali =(Hoy+U+ V), , U= —erEysinwt (30)
with the initial condition )
Yy = ——e RETERT (31)
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The interaction U can be removed from the hamiltonian by using the Goeppert-Mayer transform

i t
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where the wavefunction ¢; satisfies the Schrodinger equation

. 09; 1 € A\2 .
ih 5 2m(p CA) + V| (33)

The momentum p in equation (33) includes the radiation contribution (p = mv; + eA/c); for an
energetic particle mv; > eA/c, or E; > ¢*A?/2mc?; in addition we should have also 2mc? > E;
(non-relativistic particles); in these conditions, we may neglect the contribution of the radiation
terms in equation (33); in addition we restrict ourselves to the first-order contribution in powers
of the potential V, such that we may use the approximation ¢; ~ ¢?. The transition amplitude
given by equation (28) becomes

afi = — hf+oodt€ﬁEf t~1fdrehprU+V)e Lt edtu) _
e fjozo dte%(Ef_ t . 1 fdrehpl‘_e herOCOSwt+ (34>
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at this point we use the decomposition
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and get
+o00 )
fi=—2m Z —i)" " §(Ey—Ei+nhw) — [nhw/dreﬁp Jn(erEg/hw) — /dre%prV(r)Jn(erEo/hw)} ;
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the cross-section is

o0 2
_ pr(_m \? ipr ipr
do—nz_oog (27rh2) {nhw / dreiP* J, (erEq/hw) — / dreiP V(r)Jn(erEO/hw)] Q| (37)

where for each n the final momentum is given by pfc /2m = p?/2m — nhw. We can see in equation
(37) the multiple-photon scattering by the radiation field (first term in the bracket), the modifica-
tion of the Born scattering cross-section for the potential V' (r) due to the presence of the radiation
and interference terms between radiation and potential scattering.

The argument of the Bessel functions in equation (37) varies rapidly over the domain of integration;
consequently, we may use the asymptotic behaviour of the Bessel functions for large values of the
argument. It is easy to see that the main contribution comes from p = +eEg/w, i.e. p;—pycost =
+eFycos a/w, where « is the angle between p; and Eq. It is convenient to introduce the parameter
£ =eEy/wp; = eAy/cp; < 1; we get 1—(py/p;) cos @ = ££ cos  and, from the energy conservation,
pr = pi(1—nhw/2E;); it follows that the cross-section has maxima for 2 ~ +2¢ cos « —nhw/E; >
0. The order of magnitude of the r-integrals in equation (37) is >~ \/hwd®/eEy. We can see that
in the limit £ — 0, when the particle is quasi-classical, the maxima occur at 0, = £+/nhw/FE;,
which is the diffraction result (the magnitudes of the cross-section differ).[6]
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