
1

Journal of Theoretical Physics

Founded and Edited by M. Apostol 276 (2017)

ISSN 1453-4428

Spectral line of stimulated emission in magnetic resonance

M. Apostol
Department of Theoretical Physics, Institute of Atomic Physics,

Magurele-Bucharest Mg-6, POBox MG-35, Romania
email: apoma@theory.nipne.ro

Abstract

A two-level magnetic system is modelled by means of a 1/2-angular momentum with
arbitrary orientation and its interaction with a periodic external magnetic field is considered
(Rabi-like problem). Drawing on Schwinger’s treatment of a similar problem, we apply the
results to the emitted radiation and the absorbed power. It is shown that, owing to the
continuous oscillations of the magnetization, the emission is one stimulated by the driving
field, the coherent signal being enhanced.

Introduction. Magnetic resonance research focuses on the parametrization of the energy levels,
which provides information about the magnetic moments and electronic and magnetic structure
of the local molecular environment. The spectral line of the response receives comparatively little
attention, it being given by well-known transition probabilities in the first-order of the perturbation
theory. However, it provides direct access to measurable quantities like the absorbed power or the
emitted magnetic field, which require the calculation of the magnetization.

As it is well known, in typical experiments of magnetic resonance we consider two energy levels
separated by a frequency ω0, populate the upper level by means of electromagnetic radiation with
frequency ω ≃ ω0 and detect the response. The excitation is peformed by a time-dependent
magnetic field H = H1 cosωt, where H1 is the amplitude and t denotes the time. In the standard
treatment H is viewed as a small perturbation to the free hamiltonian, whose energy levels are not
changed by perturbation, in the first order of the perturbation theory. The response is provided
either by the absorbed power or by free-induction decay, including various versions of the latter,
like the spin echo procedure. In free-induction decay the dis-excitation processes are spontan
statistical processes, and the response, which is governed by the loss (damping) parameter, is
spontan emission of incoherent radiation. It exhibits the characteristic shape of a spectral line.[1]-
[15]

We present in this paper a different approach to magnetic resonance, where the time-dependent
interaction, introduced adiabatically in a long time, changes the free energy levels and generates
oscillations in magnetization. Since we are interested in one spectral line at one time, it is sufficient
to consider a two-level magnetic system. The continuous emission of radiation is a stimulated,
coherent emission, which enhances the response. We examine here to what extent the response
signal is enhanced by stimulated emission in realistic situations. The calculations are based on
Schwinger’s treatment of Rabi’s problem,[16]-[18] and are performed up to second-order powers of
the coupling constant.
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Zeeman splitting and transverse excitation. We assume a free hamiltonian

H0 =
1

2
~ω0Jz , (1)

where ~ is Planck’s constant and Jz is the z-component of the Pauli matrices J = (Jx, Jy, Jz);
the frequency ω0 = 2γH0 can be viewed as being due to the Zeeman splitting caused by a static
magnetic field H0, applied along the negative z-axis, γ being a gyromagnetic factor. We consider
an interaction hamiltonian

Hi = −~γHJxe
αt , (2)

where H = H1 cosωt; we assume that frequency ω is close to the frequency ω0; the interaction is
introduced adiabatically through the factor eαt, α → 0+. This factor may account for the energy
loss; it corresponds to the transverse relaxation time in nuclear magnetic resonance, where the
Bloch approximation scheme, which disentagles the transverse components from the longitudinal
component of the magnetization, allows the introduction of a second, longitudinal, relaxation
time. It is convenient to introduce the coupling parameter g = g0e

αt cosωt, g0 = 2γH1/ω0 and
write the interaction hamiltonian as

Hi = −1

2
~ω0gJx ; (3)

we assume g0 ≪ 1. The two hamiltonians H0,i given by equations (1) and (2) describe a typical
nuclear magnetic resonance for a two-level magnetic system.

The eigenvalues of the full hamiltonian H = H0 + Hi are E1,2 = ±1
2
~ω0λ, λ =

√
1 + g2 (Rabi

frequencies[16, 17]), and the eigenvectors, up to second-order powers of the coupling constant g,
are

ψ1 = aϕ1/2 − bϕ−1/2 , ψ2 = bϕ1/2 + aϕ−1/2 ,

a = 1− g2/8 , b = g/2 ;
(4)

noteworthy, these eigenvectors (which are orthonormal) depend on the time through the coupling
constant g. The wavefunction is a superposition of the form

ψ(t) = C1(t)e
−

iω0

2

∫
t dt

′
λ(t

′
)ψ1(t) + C2(t)e

iω0

2

∫
t dt

′
λ(t

′
)ψ2(t) , (5)

where λ =
√
1 + g2 ≃ 1+ g2/2 and C1,2(t) are time-dependent coefficients to be determined. The

lower limit of the time integration in equation (5) is −∞ for the interacting term in λ (the term
g2/2) and an arbitrary time for the free term; this contribution of the free term is a constant phase
factor which may be included in ψ1,2, such that we recover the non-interacting temporal phase

factors e∓
i

2
ω0t in the limit g → 0. The Schrodinger equation i~∂ψ/∂t = Hψ leads to

Ċ1 +
1
2
ġeiω0tC2 = 0 , Ċ2 − 1

2
ġe−iω0tC1 = 0 ; (6)

such systems of coupled equations for the coefficients of the wavefunction have been introduced
by Schwinger in his solution to Rabi problem.[18] In Ref. [18] the system of equations (6) is solved
for a gyrating magnetic field, where the coefficients C1,2 reduce to constants. The solution of the
system of equations (6) is

C1 =
(
1− 1

2
|A|2

)
C0

1 − AC0
2 , C2 = A∗C0

1 +
(
1− 1

2
|A|2

)
C0

2 , (7)

where

A =
1

2

∫ t

−∞

dt
′

ġeiω0t
′

(8)
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and C0
1,2 are the initial values of the coefficients C1,2 at time t→ −∞. For ∆ω =| ω−ω0 |≪ α≪ ω0

the leading term in equation (8) is

A ≃ − i

4
g0ω0

α

(∆ω)2 + α2
→ −iπ

4
g0ω0δ(∆ω) , α → 0 (9)

(where δ is the Dirac delta function). We assume a thermal equilibrium for the initial states, such
that the initial populations of the energy levels are given by

w0
1 = |C0

1 |
2
= 1

2
(1− p) , w0

2 = |C0
2 |

2
= 1

2
(1 + p) ,

p = tanh(β~ω0/2) ,

(10)

β being the inverse of the temperature; since the frequency ω0 is in the radio-frequency range, we
may use p ≃ β~ω0/2 ≪ 1 for a wide range of temperatures. The populations of the two states
after introducting the interaction are

w1,2 = |(ψ1,2(t), ψ(t))|2 = |C1,2(t)|2 ≃ w0
1,2 ± 1

16

pg2
0
ω2

0

(∆ω)2+α2 ; (11)

we can see that the upper level acquires a net over-population due to the interaction. If we keep
the factor eαt in A (equation (9)), we can compute the transition rate, which is identical with
the result of the first-order perturbation calculation. The leading contributions to the mean value
J = (ψ(t),Jψ(t)) of the angular momentum J in the state ψ(t) are

Jx ≃ 1
2
pg0ω0

α
(∆ω)2+α2 sinω0t , Jy ≃ −1

2
pg0ω0

α
(∆ω)2+α2 cosω0t ,

Jz ≃ 1
8

pg2
0
ω2

0

(∆ω)2+α2 ;

(12)

these results are identical with those obtained by solving the Bloch equations of motion for
magnetization.[3]

The interaction induces a magnetic moment m = ~γJ and a magnetization M = nm, where n
is the concentration of the two-level systems in the sample. The current density jm = c · curlM
(where c denotes the speed of light in vacuum) generates a dipolar magnetic field

Hm ≃ v
3r(rM)− r2M

r5
(13)

at the position r from the sample, where v is the sample volume. We can see that this response
is proportional to the number N = vn of two-level systems in the sample and oscillates with the
resonance frequency ω0 (ω ≃ ω0). The mean power absorbed (and dissipated) per unit volume is

P = HṀ =
1

8
pg20n~ω

3
0

α

(∆ω)2 + α2
; (14)

it exhibits the characteristic shape of a spectral line, as Mx,y = n~γJx.y and Hm do.

Arbitrary orientation. In electron spin resonance (paramagnetic resonance) or the nuclear
quadrupole resonance the ω0-splitting is produced by the local molecular environment, which may
have an arbitrary orientation. Therefore, we assume a free hamiltonian

H0 =
1

2
~ω0nJ , (15)
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where n = (sin θ cosϕ, sin θ sinϕ, cos θ) is the unit vector defined by the angles θ, ϕ of the spherical
coordinates; if the orientation is random, we may average over these angles. The eigenvalues of
H0 are ±~ω0/2 and the eigenvectors are given by the 1/2-spin rotation matrix

ϕ0
1 = cos θ

2
· ϕ1/2 + eiϕ sin θ

2
· ϕ−1/2 ,

ϕ0
2 = − sin θ

2
· ϕ1/2 + eiϕ cos θ

2
· ϕ−1/2 ,

(16)

where ϕ±1/2 are the eigenvectors of Jz (Jzϕ±1/2 = ±ϕ±1/2). The interaction hamiltonian

Hi = −~γHJze
αt = −1

2
~ω0gJz (17)

is provided by a magnetic field H = H1 cosωt directed along the z-axis.

The full hamiltonian H = H0 + Hi can be diagonalized straightforwardly; its eigenvalues are
E1,2 = ±1

2
~ω0λ,

λ =
√

1− 2g cos θ + g2 ≃ 1− g cos θ +
1

2
g2 sin2 θ (18)

(Rabi frequencies[16, 17]), and its eigenvectors are given by

ψ1 = cos θ
2

[
1− g sin2 θ

2
+ g2 sin2 θ

2

(
1− 5

2
cos2 θ

2

)]
ϕ1/2+

+eiϕ sin θ
2

[
1 + g cos2 θ

2
+ g2 cos2 θ

2

(
1− 5

2
sin2 θ

2

)]
ϕ−1/2 ,

ψ2 = − sin θ
2

[
1 + g cos2 θ

2
+ g2 cos2 θ

2

(
1− 5

2
sin2 θ

2

)]
ϕ1/2+

+eiϕ cos θ
2

[
1− g sin2 θ

2
+ g2 sin2 θ

2

(
1− 5

2
cos2 θ

2

)]
ϕ−1/2 ,

(19)

where contributions up to the g2-order are included. Also, it is useful to give the interacting
eigenvectors ψ1,2 in terms of the free (non-interacting) eigenvectors ϕ0

1,2,

ψ1 = aϕ0
1 + bϕ0

2 , ψ2 = −bϕ0
1 + aϕ0

2 , (20)

where
a = 1− 1

8
g2 sin2 θ , b = 1

2
g sin θ (1 + g cos θ) . (21)

The time-dependent interacting wavefunction has the same form as in equation (5); the Schrodinger
equation i~∂ψ/∂t = Hψ leads to Schwinger’s system of equations

Ċ1 − ġ sin θ
(
1
2
+ g cos θ

)
eiω0

∫
t dt

′
λ(t

′
)C2 = 0 ,

Ċ2 + ġ sin θ
(
1
2
+ g cos θ

)
e−iω0

∫
t dt

′
λ(t

′
)C1 = 0 .

(22)

In estimating the time integrals
∫ t
dt

′

λ(t
′

) we encounter terms corresponding to transitions ω =
0,±ω0/2,±ω0; limiting ourselves to ω ≃ ω0, the system of equations (22) becomes

Ċ1 + βC2 = 0 , Ċ2 − β∗C1 = 0 , (23)

where

β =
i

4
g0 sin θ · (ω + iα)e−i(ω−ω0)t+αt . (24)
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The solution of this system of equations is

C1 =
(
1− 1

2
|A|2

)
C0

1 + AC0
2 , C2 = −A∗C0

1 +
(
1− 1

2
|A|2

)
C0

2 , (25)

where

A = − i

4
g0ω0 sin θ

α

(∆ω)2 + α2
. (26)

We use C0
1,2 =

√
(1∓ p)/2, where p is given by equation (10), corresponding to thermal equilib-

rium. The populations of the two states are

w1,2 ≃ w0
1,2 ± 1

16
sin2 θ

pg2
0
ω2

0

(∆ω)2+α2
(27)

and the leading contributions to the mean value of the angular momentum in the state ψ(t) are

J+ = Jx + iJy ≃ 2p |A| (i− g cos θ sinω0t)e
−i(ω̃0−ϕ)t−

−2p |A| (1 + cos θ)(sin ω̃0t− g0 cos θ sinω0t cos ω̃0t)e
iϕ+

+2p |A| g sin2 θ sin ω̃0t+ 2p |A|2 sin θ · eiϕ ,

(28)

and
Jz ≃ 2p |A| sin θ (sin ω̃0t− g0 cos θ sinω0t cos ω̃0t) +

+p |A| g sin 2θ sin ω̃0t + 2p |A|2 cos θ ,

(29)

where ω̃0 = ω0(1 +
1
4
g20 sin

2 θ) and J− = Jx − iJy == J
∗

+. We may use ω0 instead of ω̃0 in the
above equations, leave aside the time-independent contributions and the terms oscillating with
frequency 2ω0, and get

Jx ≃ 2p |A|
[
sin(ω0t− ϕ)− 1

4
g0 cos θ sin(ω0t+ ϕ)− (1 + cos θ) sinω0t cosϕ

]
,

Jy ≃ 2p |A|
[
cos(ω0t− ϕ) + 1

4
g0 cos θ cos(ω0t + ϕ)− (1 + cos θ) sinω0t sinϕ

]
,

Jz ≃ 2p |A| sin θ sinω0t ;

(30)

the mean power absorbed per unit volume is

P = HṀ =
1

8
pg20n~ω

3
0 sin

2 θ
α

(∆ω)2 + α2
. (31)

If we take the average over angles ϕ and θ, we get Jx,y = 0 and

J z =
1

3
pg0ω0

α

(∆ω)2 + α2
sinω0t . (32)

Making use of these results, we can compute immediately the emitted field, which exhibits the
coherent character of a stimulated emission.

Conclusion. In conclusion, we have solved the Schrodinger equation for a two-level magnetic
system subject to a time-dependent external magnetic field with arbitrary orientation up to the
second order in the coupling constant. The mean power absorbed per unit volume and the emitted
radiation have been estimated. It is shown that the emitted radiation has the character of a
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coherent radiation, stimulated by the driving external field, due to the continuous oscillations of
the magnetization.

As it is well-known, the coherent response increases the signal by a factor of the order
√
N , where

N is the number of the two-level systems in the sample. However, in realistic situations important
decoherence factors appear, which reduce appreciably this enhancement. First, we have used in
the discussion above quantum-mechanical wavefunctions, while the sample was supposed to be at
thermal equilibrium. The thermal bath is an important decoherence factor. For instance, at room
temperature the energy levels are affected by an uncertainty of the order T = 300K ≃ 4×10−14erg,
which is much higher than the two-level separation energy ~ω0 ≃ 10−21erg for ω0 = 1MHz. On
the other hand, the magnetic momenta may be ordered along a distance of the order 1µm, which
further reduces the number of coherent two-level systems. All these reduction factors apply to the
number N of two-level systems.

Acknowledgements. The author is indebted to the members of the Laboratory of Theoretical
Physics at Magurele-Bucharest for many fruitful discussions. This work has been supported by the
Scientific Research Agency of the Romanian Government through Grants 04-ELI / 2016 (Program
5/5.1/ELI-RO), PN 16 42 01 01 / 2016 and PN (ELI) 16 42 01 05 / 2016.

References

[1] E. M. Purcell, H. C. Torrey, R. V. Pound, "Resonance absorption by nuclear magnetic mo-
ments in a solid", Phys. Rev. 69 37-38 (1946).

[2] F. Bloch, W. W. Hansen and M. Packard, "Nuclear induction", Phys. Rev. 69 127 (1946).

[3] F. Bloch, "Nuclear Induction", Phys. Rev. 70 460-474 (1946).

[4] F. Bloch, W. W. Hansen and M. Packard, "The nuclear induction experiment", Phys. Rev.
70 474-485 (1946).

[5] E. J. Zavoisky, "Spin magnetic resonance in the decimetre-wave region", J. Phys. U. S. S. R.
10 197-198 (1946).

[6] C. Kittel, "Interpretation of anomalous Larmor frequencies in ferromagnetic resonance ex-
periment", Phys. Rev. 71 270-271 (1947).

[7] C. Kittel, "On the theory of ferromagnetic resonance absorption", Phys. Rev. 73 155-161
(1948).

[8] W. A. Nierenberg, N. F. Ramsey and S. B. Brody, "Measurements of Nuclear Quadrupole
Moment Interactions", Phys. Rev. 70 773-775 (1946).

[9] W. A. Nierenberg and N. F. Ramsey, "The radiofrequency spectra of sodium halides", Phys.
Rev. 72 1075-1089 (1947).

[10] H.-G. Dehmelt and H. Kruger, "Kernquadrupolfrequenzen in festen dichlorathylen", Natur-
wiss. 37 111-112 (1950).

[11] R. V. Pound, "Nuclear electric quadrupole interactions in crystals", Phys. Rev. 79 685-702
(1950).



J. Theor. Phys. 7

[12] E. L. Hahn, "Spin echoes", Phys. Rev. 80 580-594 (1950).

[13] A. Abragam, The Principles of Nuclear Magnetism, Clarendon Press, Oxford (1961).

[14] G. E. Pake, Paramagnetic Resonance, W. A. Benjamin, Inc., NY (1962).

[15] T. P. Das and E. L. Hahn, Nuclear Quadrupole Resonance Spectroscopy, in Solid State Physics,
eds. F. Seitz and D. Turnbull, Suppl.1, Academic Press, NY (1958).

[16] I. I. Rabi, "On the process of space quantization", Phys. Rev. 49 324-328 (1936).

[17] I. I. Rabi, "Space quantization in a gyrating magnetic field", Phys. Rev. 51 652-654 (1937).

[18] J. Schwinger, "On nonadiabatic processes in inhomogeneous fields", Phys. Rev. 51 648-651
(1937).

c© J. Theor. Phys. 2017, apoma@theor1.theory.nipne.ro


