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Abstract

The problem of the energy spectrum of the heavy atoms is briefly reviewed, with emphasis

on the single- vs many-particle picture, self-consistent Hartree-Fock equations and mean-field

concept. Also, the stability, binding energy and collective excitations of heavy atoms within

the framework of the linearized Thomas-Fermi model are briefly reviewed. Single-particle

excitations are derived for heavy atoms within the linearized Thomas-Fermi model.

Introduction. We consider a heavy atom with nuclear charge Ze, Z ≫ 1, and Z electrons with
mass m and charge −e each; the nucleus is assumed to be fixed. The electrons and the nucleus
interact by Coulomb forces and the motion of the electrons is non-relativistic; we neglect the
relativistic corrections. The assembly of electrons is described by a wavefunction ψ(t, r1, ...rZ),
where t denotes the time and ri, i = 1, 2, ...Z, is the position of the i-th electron. This wavefunc-
tion must be properly symmetrized according to the spin of the atom, which in non-relativsitic
approximation is conserved. The wavefunction ψ is the solution of the Schrodinger equation

i~∂ψ
∂t

= Hψ ,

H = − ~2

2m
∆i − Ze2

∑

i
1

ri
+ e2

2

∑

i 6=j
1

|ri−rj |
,

(1)

where ~ is Planck’s cosntant; we can see in the hamiltonian H the electron-nucleus Coulomb
attraction and the electron-electron Coulomb repulsion. The energies E are given by Hφ = Eφ,
where ψ = e−

i
~
Etφ. The Coulomb potential
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Ze
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′
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acting on an electron placed at r satisfies the Poisson equation

∆ϕ = −4πZeδ(r) + 4πe

′
∑

i

δ(r− ri) , (3)

where we can recognize the charge density of the central nucleus and of the electrons placed at ri;
the prime over the summation sign means the exclusion of the electron acted by the potential.

It is hopeless to have a solution of the problem formulated above. We are only left with clas-
sifying the atomic energies in terms of the total orbital momentum and total spin, which are
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both conserved within the non-relativistic approximation (together with the parity); the various
spatial orientation of these operators implies a degeneration of these atomic states; we expect a
fine-structure splitting arising from relativistic spin-orbit and spin-spin corrections.

An important simplification arises when we assume that the wavefunction is constructed from
symmetrized products of single-particle states; the Hartree-Fock system of self-consistent coupled
equations is then obtained, whose (numerical) solution is attainable for light atoms, in pretty good
agreement with the atomic spectroscopy. However, it is conceivable that the ground state of the
complex atoms remains a multi-particle state, and the excited states of these atoms are quasi-
particle or collective excitations, with a finite lifetime, irreducible, rigorously, to single-particle
constructions.

We note that an electron density can be defined by

n(t, r) =

∫ ′

dr1...drZ |(ψ(t, r1, ...rZ)|2 , (4)

where the prime means integration over all positions except r, which appears in the mean potential
energy in equation (1); the variation of (ψ,Hψ) leads to Schrodinger equation (1); the use of a
Hartree-Fock approximation to ψ has the inconvenient that the density depends on the set of
single-particle states included in the Hartree-Fock approximation (the variation of (ψ,Hψ) in
this case leads to the Hartree-Fock equations); this inconvenient can be removed by using a field
operator ψ, which includes all the single-particle states; however, there still remains the basic
drawback of using single-particle states. We note also that there is no equilibrium density n(r)
for the potential (interaction) energy in the ground state, except the collapse ri = 0, as expected.
Stable states may only exists for moving electrons, as in the classical mechanics, and then their
radiation should vanish; a point ensured by the quantum-mechanics.

The existence of the Coulomb potential ϕ suggests a very useful approximation, known as the
mean-field approximation (due to Bohr): we may assume that each electron moves in a field
generated by the nucleus and the rest of the electrons. In the first approximation, at least for the
ground state, we may assume that the mean field is a centrally-symmetric field; then, the electron
states are caracterized by an orbital number l (with the corresponding orbital degeneracy), a
principal number n and the spin orientation; we may construct the ground state of the atom and
the excited states by such electronic configurations, in much the same manner as for a hydrogen
atom; we may have closed shells, where the total orbital moment and the total spin are zero,
and open shells whose filling are given by Hund’s semi-empirical rules (first get the highest spin
in the open shell, then the highest possible orbital momentum; rules derived from minimizng the
Coulomb repulsion between the electrons and the highest possible symmetry); connection with the
states classified according to the total orbital momentum and the total spin can be made. When
confronted with the Mendeleev periodic table and the irregular variation with Z of the ionization
potentials, we find that there should be inversions in filling up the hydrogen-like mean-field shells:
for instance, the shell 4s appears before the shell 3d, 5s appears before 4d, 6s before 5d, 5d before
4f , etc (with notation nl). After finding the electronic states of the mean-field potential, we
construct the electron density for a given configuration and check the Poisson equation of the
mean-field for consistency; corrections are then necessary, such that the mean-field is different for
each electron state and depends on the configuration; there is no definite rule to attain consistency,
which means that the self-consistent solution is impossible, in fact. This indefiniteness is specific
to our working with single-particle states.

Linearized Thomas-Fermi model.[1, 2] Working with the single-particle picture seems un-
avoidable (and we should be content with the ensuing errors), but we can minimize the effect
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of this picture; this can be achieved by using the Fermi statistics and, for heavy atoms, the
quasi-classical approximation, in the linearized Thomas-Fermi model. We note that heavy atoms
are strongly bound, such that the highest-state electrons have a high spatial variation of their
wavefunctions; that means that the nucleus is screened by the lowest-state electrons and we may
use the quasi-classical approximation for the highest-state electrons. Therefore, we may assume
that the electrons ocupy quasi-free states uo to a Fermi level which depends on the position.
Then we have a dependence of the density n ∼ ϕ3/2 on the potential ϕ, through n ∼ k3F and
ϕ ∼ εF ∼ k2F , where kF is the Fermi wavevector and εF is the Fermi level. We note that the Fermi
sea is inert in the dynamics, and only the Fermi surface does act. This is the well-known standard
"3/2" Thomas-Fermi model, which exhibits some well-known inconveniences. These drawbacks
originate in not keeping the quasi-classical approximation consistently: at those positions where
kF varies strongly (i.e. near the nucleus and far away from the nucleus), these variations are
amplified by powers like k2F and k3F ; consequently, we adop a linearized form by replacing these
powers by q2kF and, respectively, q4kF , such that n ∼ q2ϕ, q being a variational parameter which
is determined from the minimum of the energy. Thus, the Poisson equation has the screened so-
lution ϕ = (Ze)e−qr/r and we get a consistent picture of the ground state. The linearization and
the variational character of the parameter q account for multi-particle character of the picture;
the functional dependences on q derived from the quasi-free particle Fermi model still reflect the
starting single-particle character. The strong spatial variations of the potential near the nucleus
and the corresponding deviations from the quasi-classical approximation may be accounted for
by a Hartree-type perturbation-theory correction, while the exchange energy brings only a minor
contribution of at most 4% to the total energy; the overall error of the linearized Thomas-Fermi
model is of the order 5%. The binding energy −15.84Z7/3eV is obtained within the linearized
Thomas-Fermi model, which is in good agreement with the empirical estimation −16Z7/3eV .

The overall picture obtained for the ground state of a heavy atom within the linearized Thomas-
Fermi model is an electron density n = (Zq2/4π)e−qr, the electrons being acted by the screened
potential ϕ = (Ze)e−qr/r (with a Hartree-type correction to the total energy). The ground-
state energy is obtained from the minimum of an energy function E(q), which leads to q ≃
Z1/3/aH , where aH = ~

2/me2 ≃ 0.53Å is the Bohr radius. The radial electron density 4πr2n(r) =
(Zq2)r2e−qr has a maximum for r = R, qR ≃ 1, such that we may take R ≃ aH/Z

1/3 as the
radius of the atom. We can see that heavy atoms are more tightly bound than light atoms, as
a consequence of the factor Z−1/3 in their radius R; this radius lies in between the radius of the
first Bohr orbit aH/Z and the Bohr radius aH (which may be viewed as the maximum extent of
the atom).

Collective excitations. The collective excitations of heavy atoms in the linearized Thomas-
Fermi model are given by the energy variation about its equilibrium value, due to the variation
of the parameter q. Since the equilibrium is attained for qR ≃ 1, it follows that these excitations
correspond to variations δR = u ≃ −δq/q2, i.e. to radial vibrations. From the energy function
E(q) expanded in power series of δq = −q2u we get the frequency ω0 of these (harmonic) vibrations
as

~ω0 ≃
Ze2

aH
= Z

~
2

ma2H
≃ 28ZeV ; (5)

this energy is in the range of moderate X-rays, as expected. Of course, these collective excitations
are quantum-mechanical oscillators with coordinate u; they are normal modes of vibrations of the
atom.

If the atom is subject to an electric field directed along an axis, the equilibrium condition gives
δq = −qδR/R = −q2δR, where δR = u cos θ, where u is the displacement of the electrons and θ is
the angle made by R with the direction of the electric field. The variation δq = −q2u cos θ depends
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now on the angle θ, such that we should use for the variation of the energy (1/2)
∫

dθ sin θδE(q);
this gives a factor 1/

√
3 in front of the frequency given above. It follows the polarization energy

δE ≃ (a3H/Z)E
2 for a static electric field E, and the polarizability α ≃ a3H/Z. The vibrations

induced by an external electric field, varying periodically in time, are called giant atomic-dipole
oscillations; they exhibit a resonance for ω = ω0, where ω is the frequency of the field.[2]

The change in energy implies also anharmonicities, which, for weak external forces (e.g., electric
fields) generate higher-order harmonics radiation; for a sudden application of weak external forces
the electrons are re-configured and a stationary regime of higher-order harmonics radiation is
attained. If the external field is higher, ionization may appear (as estimated in Ref. [2]).

Single-particle excitations. Within the linearized Thomas-Fermi model the electrons move in
the potential ϕ(r) = (Ze/r)e−qr, where q ≃ Z1/3/aH ; this is a self-consistent mean-field pseudo-
potential, in the sense that it may be suitable for global properties, but not for single-particle
properties. There is no analytical solution of the Schrodinger equation with this potential. We
can approximate it by an effective Coulomb potential ϕ(r) = (Ze/r)e−qr, where the average is
taken over the spherical volume with radius R = 1/q; we get ϕ(r) = Z∗e/r, where the effective
(screned) nuclear charge is Z∗ = Ze−qr ≃ 0.5Z electron charges. The effective Coulomb potential
ϕ(r) = Z∗e/r may be used to get approximate single-particle excitations. Indeed, the hydrogen-
like energy levels in this potential are En = Z∗2e2/2aHn

2, where n = 1, 2, .... These energy levels
are filled up to some maximum value N , which, in the Thomas-Fermi model of quasi-free electrons
is given by N3 ≃ Z and in the hydrogen-like model is given by

∑N
n=1

2
∑n−1

0
(2l + 1) ≃ N3 ≃ Z;

we note that the orbital number l takes valus 0, 1, ...n− 1 and orbital and spin degeneracies are
removed in the quasi-free electron model. Therefore, we may assume N ≃ Z1/3 and the maximum
value of the orbital number for the highest level L = N − 1.1 It follows that the single-particle
excitatiosn are given by

δEN(δn) = δ(Z∗2e2/2aHN
2) = (Z∗2e2/aHN

3)δn ≃

≃ Z∗2e2

ZaH
δn ,

(6)

where δn = 1, 2, 3...; these energy levels are separated by ≃ 7ZeV ; these energy levels are lower
than the energy of the collective excitations. It is well known that perheral elctrons with a
Z − 1, Z − 2, ... core have much lower energy levels.

There may exist another method of estimation of the single-particle excitations starting with the
Schrodinger equation

− ~
2

2m
∆ψ − Z∗e2

r
ψ = Eψ (7)

with ψ = RYlm, where Yim are the spherical functions; the radial equation is

1

r2
d

dr

(

r2
dR

dr

)

+

[

−ε−
(

L2

r2
− 2Z∗

aHr

)]

R = 0 , (8)

where ε = 2m | E | /~2 (E < 0) and L2 = l(l + 1); the effective potential

V =
L2

r2
− 2Z∗

aHr
(9)

1It is worth noting that the formula Z ≃ N3 = (L + 1)3 gives the atomic number Z when the shell L first
appears in the atom; for L = 1, 2, 3, 4 we get Z = 8, 27, 64, 125 instead of the correct valeus Z = 5, 21, 58 and
probably Z = 124 (p, d, f and g shells).
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has a minimum value −V0 = −Z∗2/L2aH for r0 = L2aH/Z
∗ and we may expand it in powers of

ρ = r − r0 about this point; the equation becomes

1

ρ2
d

dρ

(

ρ2
dR

dρ

)

−
(

ε− V0 + V2ρ
2 + ...

)

R = 0 , (10)

where V2 = (1/2)V
′′

(r0) = Z∗4/L6a4H . It is convenient to make the substitutions ρ = αξ, α2
√
V2 =

1 and R = e−ξ
2/2F , where

F
′′

+ 2

(

1

ξ
− ξ

)

F
′

+ (β − 3)F = 0 , β =
V0 − ε√
V2

; (11)

this equation is solven by a series F =
∑

s=0
Csξ

2s with the coefficients Cs satisfying the relation

Cs+1

Cs
=

4s+ 3− β

2(s+ 1)(2s+ 3)
; (12)

the series terminates at some integer s = 0, 1, 2, ... given by β = 4s+3, whence we get the energy
levels

Es = − Z∗2e2

2aHL2
+

Z∗2e2

2aHL2

4s+ 3

L
. (13)

This formula is valid for rather unrealistic case L = N − 1 ≫ 1, where it may be written as

Es = − Z∗2e2

2aH
(

L+ 4s+3

4

)2
= − Z∗2e2

2aH (N + s− 1/4)2
, (14)

which exhibits a Rydberg correction (s − 1/4) to hydrogen-like energy levels. Equation (13)
imposes a rather severe constraint s < (L − 3)/4 = N/4 − 1 for realistic cases, which originates
in the series expansion of the effective potential V (this series seems to converge slowly). Leaving
aside this constraint, equation (13) gives excited energy levels

δEs =
Z∗2e2

aHL3
· 2s , (15)

which agrees qualitatively with equation (6) (for L = N − 1 ≫ 1).

Acknowledgements. The author is indebted to the members of the Laboratory of Theoretical
Physics at Magurele-Bucharest for many fruitful discussions. This work has been supported by the
Scientific Research Agency of the Romanian Government through Grants 04-ELI / 2016 (Program
5/5.1/ELI-RO), PN 16 42 01 01 / 2016 and PN (ELI) 16 42 01 05 / 2016.

References

[1] L. C. Cune and M. Apostol, "On the atomic binding energy in the Thomas-Fermi model",
Roum. J. Phys. 55 913-919 (2010).

[2] M. Apostol, "Giant dipole oscillations and ionization of heavy atoms by intense electromagnetic
fields", Roum. Reps. Phys. 67 837-853 (2015).

c© J. Theor. Phys. 2017, apoma@theor1.theory.nipne.ro


