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Abstract

It is shown how to determine the seismic-moment tensor of a shear faulting from measure-
ments of the (quasi)-static displacement in seismogen zones at Earth’s surface. This is known
as the inverse problem in Seismology. In a previous paper its solution has been given for
measurements of the displacement vector at Earth’s surface produced by seismic waves (an
earthquake). Usually, the problem is treated in non-covariant forms, which leads to results
dependent on the reference frame. Here we describe a manifestly covariant procedure.

Introduction. It is widely admitted that the continuous accumulation of the tectonic strain may
be gradually dis-charged, to some extent, causing quasi-static crustal deformations of the Earth’s
surface in seismogen zones.[1]-[7] We show here that measurements of these deformations (which
are very small) may give, besides qualitative information about the seismic activity, the depth of
the focus, and the focal volume, the opportunity to determine the tensor of the seismic moment
for a shear faulting. This is known as the inverse problem in Seismology. Usually, it is tackled by
non-covariant forms of the experimental data, which produce results dependent on the reference
frame. Since the seismic moment is a tensor, it is emphasized here that only covariant forms of the
data are relevant for its determination. This covariant procedure has been described in a previous
paper for data provided by measurements of the displacement vector at Earth’s surface in the
seismic waves produced by an earthquake.[8] Here we solve the similar problem for (quasi)-static
displacement in seismogen zones for a seismic moment correspondng to a shear faulting. We use
the displacement derived previously for a homogeneoaus isotropic half-space with tensorial point
forces generated by a seismic moment in a focus localized inside the half-space.[9]

Static displacement. In Ref. [9] the static deformations produced by a tensorial point force in a
homogeneous isotropic elastic half-space have been computed. The equation of elastic equilibrium
with the force density f is

∆u+
1

1− 2σ
graddivu = −

2(1 + σ)

E
f , (1)

where u is the displacement vector (with components ui, i = 1, 2, 3), E is the Young modulus and
σ is the Poisson ratio. The components of the force are given by

fi = Mij∂jδ(r− r0) , (2)

where r0 is the position of the focus and Mij is the tensor of the seismic moment. It is convenient
to write f = − [2(1 + σ)/E] f and M ij = − [2(1 + σ)/E]Mij (reduced force and seismic moment).
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Equation (1) is solved for a half-space z < 0, with free surface z = 0, the position of the focus being
r0 = (0, 0, z0), z0 < 0; we use the radial coordinate ρ = (x2 + y2)1/2 for the in-plane coordinates
x, y and x1 = x, x2 = y, x3 = z. The coordinates of the displacement vector of the surface z = 0
are given by[9]

2π · uα = −MαβI
(1)
β +Mα3I

(0) − 1
2
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α ]
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(1)
α ]

+z0M 3αI
(0)
α + 1

2
M 33[(1− 2σ)I(0) − z0

∂
∂z0
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(3)

where
I(0) = −z0

r3
, I(1) = 1

r
, I(2)α = − xα

r(r+|z0|)
,

I(3)α = − xα

r+|z0|
,

(4)

I(n)α = ∂αI
(n) (n = 0, 1, 2, 3) and r = (ρ2 + z20)

1/2; we use α, β, γ = 1, 2. The components uα

are vanishing for ρ −→ 0 and go like 1/ρ2 for ρ −→ ∞; they have a maximum value for ρ of the
order | z0 |. The component u3 goes like 1/z20 for ρ −→ 0 and 1/ρ2 for ρ −→ ∞. It is convenient
to give these displacement components for ρ close to zero, i.e. in the seismogen zone (close to a
presumable epicentre). We get

uα = 1
16π

[

4(1− 2σ)M33 − (3 + 2σ)M 0

]

xα

|z0|3
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8π
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Mαβxβ
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+ ... ,

u3 =
1

8πz2
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2(3− 2σ)M33 − (1 + 2σ)M0

]

+ M3αxα

2π|z0|3
+ ... ,

(5)

where M0 = M ii is the trace of the tensor M ij . Equations (5) depend on the reference frame
(their form is not covariant); consequently, we cannot use them for determining the components
of the seismic-moment tensor.

A simplified numerical estimation of these unknowns can be obtained as follows. We assume M0 =
0 (as for a shear faulting), replace all the components of the seismic-moment tensor in equations
(5) by a mean value M and average over the orientation of the vector ρ; we denote the resulting
u3 by uv (vertical component) and introduce uh(horizontal component) by uh = (u2

1 + u2
2)

1/2; we
get approximately

uh ≃
(1− 2σ)

∣

∣

∣M
∣

∣

∣

4π

ρ

| z0 |3
, uv ≃

(3− 2σ)M

4πz20
; (6)

hence, we get immediately the depth of the focus

| z0 |≃
1− 2σ

3− 2σ
|uv| /(∂uh/∂ρ) (7)

and the mean value M = 4πz20uv/(3 − 2σ) of the (reduced) seismic moment. Making use of
M ij = − [2(1 + σ)/E]Mij we have

Mav ≃ −
2πE

(1 + σ)(3− 2σ)
z20uv (8)

for the mean value Mav of the seismic moment Mij . For Mav = 1022dyn · cm (which would
correspond to an earhquake with magnitude Mw = 4 by the Gutenberg-Richter law lgMav =
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1.5Mw + 16.1), Young modulus E = 1011dyn/cm2, σ = 0.25 and depth | z0 |= 100km we get a
vertical displacement uv ≃ 1µm; we can see that the static surfece displacement is very small.

A rough estimate for the elastic energy stored by the static deformation is given by E ≃ 4πz20E |
uv |≃ 2(1 + σ)(3− 2σ) |Mav|; it is also given by E ≃ µV , where µ is the Lame coefficient and V is
the focal volume (µ = E/2(1+ σ); the other Lame coefficient is λ = Eσ/(1− 2σ)(1+ σ)); making
use of the approximations introduced above, we get V ≃ 8π(1+σ)z20 | uv |. For | z0 |= 100km and
uv = 1µm (σ = 0.25) we get a volume V ≃ 105πm, i.e. a linear dimension l ≃ 500m. Similarly,
from equations (5) we get an estimate uij ∼ V/ | z0 |

3 for the surface strain; using the numerical
data above, it is ofÅ order.

The displacement components given by equation (5) can be written in a covariant form (M0 = 0)
as

ui =
{[

2(3− 2σ)M
(n)
4 − (9− 10σ)M

(nv)
4

]

ni − 4M
(n)
4 vi + (1− 2σ)M ijvj

}

1

8πz20
, (9)

where
n = (xα, z − z0)/ | z0 | , v = (xα, z)/ | z0 | ,

M
(n)
4 = M ijninj , M

(nv)
4 = M ijnivj ;

(10)

in equations (9) and (10) we retain only contributions linear in xα and in the limit z → 0. Within
these restrictions the form given by equation (9) is unique. In these equations

M i = M ijvj ≃
M iαxα

| z0 |
(11)

are the components of a vector and

M
(n)
4 ≃ 2M 3 +M 33 , M

(nv)
4 ≃M 3 (12)

are scalars. Taking the scalar product nu ≃ u3 in equation (9), we get

M
(n)
4 =

4πz20u3 + 4(1− σ)M3

3− 2σ
; (13)

inserting this M
(n)
4 and M

(nv)
4 ≃M3 in equation (9) we get

uα =
1− 2σ

3− 2σ

xα

| z0 |
u3 +

1− 2σ

8πz20
Mα (14)

(and the identity u3 = u3). This equation gives

Mα = 8πz20

(

1

1− 2σ
uα −

1

3− 2σ

xα

| z0 |
u3

)

(15)

(and Mα = − [E/2(1 + σ)]Mα) as functions of the measured quantities uα, u3 and xα; M
(nv)
4

and M
(n)
4 are given by equations (12) and (13) as functions of u3 and the parameter M 3. This is

the maximal information provided by measuring the static displacement in a seismogen zone; the
parameter z0 remains undetermined; we can use its numerical estimation given above (equation
(7)).

Seismic moment. We assume that the components Mα of the vector M are determined from
data, according to equation (15); the component M3 will be determined shortly. The scalars
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M
(nv)
4 ≃ M3 and M

(n)
4 are given by equations (12) and (13), respectively; they depend on the

parameter M3. Parameters z0 (focus depth) and the focal volume V remain undetermined. Order-
of-magnitude estimations given above (equation (7) and below) may be used for them.

In order to determine the seismic moment we use its expression derived in Ref. [8] for a shear
faulting. According to Ref. [8] this tensor is given by

Mij = M0(siaj + sjai) , i, j = 1, 2, 3 , (16)

where M0 = 2µV and si, ai are the components of two orthogonal unit vectors s and a: s is
normal to the fault plane and a is directed along the fault displacement (fault sliding).[10] We can
see that equation (10) implies M0 = Mii = 0. We assume that the measured data of the static
displacement satisfy this condition. In addition, we assume that M0 is a known parameter.

We introduce the scalar products A = av and B = sv and write

As +Ba = m , Bs + Aa = v (17)

from equation (16), where m = M/M0; we solve this system of equations for s and a with the
conditions s2 = a2 = 1, sa = 0. We note that equation (16) is invariant under the symmetry
operations s ←→ a and s, a ←→ −s, −a (and s ←→ −a); consequently, it is sufficient to retain
one solution of the system of equations (17) (it has multiple solutions), all the other being given
by these symmetry operations. We get

s = A
A2−B2m−

B
A2−B2v , a = − B

A2−B2m+ A
A2−B2v (18)

and
A2 +B2 = m2 = v2 , 2AB = v2m4 , (19)

where m4 = mv/v2 = Mijvivj/v
2M0. From m2 = v2 we get the component M3 as given by

M2
3 = M02v2 −M2

α ; (20)

we may take

A = v

√

√

√

√

1 +
√

1−m2
4

2
, B = sgn(m4) · v

√

√

√

√

1−
√

1−m2
4

2
(21)

as a solution of the system of equations (19); this solves the problem of determining the seismic
moment from the measurements of the surface static displacement. From equation (16) the seismic-
moment tensor is given by

Mij =
M0

v2(1−m2
4)

[mivj +mjvi −m4 (mimj + vivj)] ; (22)

the vector v is known from equation (10) (z → 0, v = ρ/ | z0 |) and the vector m is known
from equations (15) and (20) (with z0 and M0 known parameters); the scalar m4 is given by
m4 = Mαvα/v

2M0. The component M3 does not enter the expression of m4; it is included in Mij .
The quadratic form Mijxixj = const is a hyperbola with an arbitrary orientation in space; its
asymptotes indicate the fault plane (vector s) and the fault slip (vector a).

The isotropic case Mij = −M
isδij , where M is = 2(2µ+ λ)V , implies a surface displacement

u =
M is(1 + σ)

4πz20E
[(3− 10σ)n− (3− σ)v] , (23)
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the vector M being given by M = −M is
v. The energy can be estimated as E = M is/2 = 4πz20E |

uv |,which leads to a focal volume V = [4π(1 + σ)(1− 2σ)/(1− σ)]z20 | uv |.

Concluding remarks. It is shown in this paper that the tensor of the seismic moment of a shear
faulting can be deduced from measurements of the (quasi)-static displacement at Earth’s surface in
seismogen zones by using covariant forms of the measured data. The derivation is made possible by
using the static deformations derived for a homogeneous isotropic half-space with tensorial point
forces generated by a seismic moment in a focus localized inside the half-space. The procedure
described here is a solution of the inverse problem in Seismology; its practical application may be
hampered by the errors implied by the very small (quasi)-static surface displacements. A similar
problem has been solved in Ref. [8] for the surface displacement in the seismic waves produced by
an earthquake.
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