
1

Journal of Theoretical Physics

Founded and Edited by M. Apostol 28 (1997)

ISSN 1453-4428

On the Bose-Einstein condensation
M. Apostol

Department of Theoretical Physics,
Institute of Atomic Physics,
Magurele-Bucharest MG-6,
POBox MG-35, Romania

email: apoma@theor1.ifa.ro

Abstract

The Bose-Einstein condensation is reviewed.

As it is well-known, the number of particles N of an ensemble of ideal bosons is given by

N = g
∑
k

1

exp [(ε− µ) /T ]− 1
, (1)

where g = 2s + 1, s being the spin, µ is the chemical potential and T is the temperature; the
energy levels ε are given by ε(k) = h̄2k2/2m, where h̄ is Planck’s constant and m is the particle
mass; k denotes the wavevectors, and we assume that the particles are confined to a cube of size
L, such that the volume of the cube is V = L3, and k1,2,3 = (2π/L)·integer. Equation (1) gives
the chemical potential µ for any values of the temperature, number of particles and volume. The
analysis of this equation reveals the existence of a phase transition in the Bose-Einstein ensemble
of particles, i.e. the existence of a certain critical temperature at which the temperature slope of
the specific heat is discontinuous.

First, let us note that the chemical potential in (1) can only take negative values, in order to avoid
singularities in the summation over k. Leaving aside, for the moment, the k = 0-term in (1) the
summation over k may be replaced by an integral,

N = g
V

4π2

(
2mT

h̄2

)3/2 ∫
dx ·

√
x

exp (x− µ/T )− 1
; (2)

on decreasing the temperature µ decreases toward small, negative values, such as (2) be satisfied.
However, for a vanishing µ, there is a certain temperature T0, given by

N = g
V

4π2

(
2mT0

h̄2

)3/2 ∫
dx ·

√
x

exp(x)− 1
, (3)

below which equation (2) can no longer be satisfied. But, of course, the singular term k = 0 has
to come into play around this temperature (i.e. for vanishing µ), and it is precisely this term
which ensures the fulfilment of (1).

Therefore, equation (1) reads

N = g
1

exp (−µ/T )− 1
+ g

V

4π2

(
2mT

h̄2

)3/2 ∫
dx ·

√
x

exp (x− µ/T )− 1
, (4)
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and making use of (3) one may write

N = g
1

exp (−µ/T )− 1
+ N (T/T0)

3/2 +

(5)

+g
V

4π2

(
2mT

h̄2

)3/2 ∫
dx ·

√
x ·

[
1

exp (x− µ/T )− 1
− 1

exp x− 1

]
.

The integral in (5) is easily performed for small −µ/T , and equation (5) becomes

N =
g

−µ/T
+ N (T/T0)

3/2 − g
V

4π

(
2mT

h̄2

)3/2 √
−µ/T . (6)

For T < T0 equation (6) can be written as

1 =
g

N (−µ/T )
+ (T/T0)

3/2 − g
V

4πN

(
2mT

h̄2

)3/2
√

N (−µ/T )
√

N
, (7)

and in the thermodynamic limit we obtain

−µ/T =
1

N

g

1− (T/T0)
3/2

→ 0 , N →∞ , (8)

i.e. a vanishing chemical potential. For T > T0 the first term in (6) vanishes in the thermodynamic
limit and we get

−µ/T = (4πN/gV )2
(
h̄2/2mT

)3 [
(T/T0)

3/2 − 1
]2

; (9)

for T = T0 the chemical potential is zero. The existence of two distinct values of the chemical
potential at a finite temperature is the origin of the phase transition mentioned above. The integral
in (3) is I1/2 = Γ(3/2)ζ(3/2) = (

√
π/2) · 2.61, so that we can rewrite (9) as

−µ/T = 0.54
[
1− (T0/T )3/2

]2
(10)

for T slightly above T0.

Let us turn now to discussing the thermodynamics of the Bose-Einstein ensemble of particles. The
temperature T0 given by (3) can be estimated as follows:

T0 =
6.64

g2/3

(
N

V

)2/3 h̄2

2m
=

6.64

g2/3

(
me

m

) (
aH

a

)2

ry ' 143

g2/3

(
aH

a

)2

K (11)

where we have introduced the average inter-particle spacing a = (V/N)1/3, the Bohr radius aH =
h̄2/mee

2 = 0.53Å (me = 1/1836 and e being the electron mass and, respectively, charge), the
rydberg e2/2aH = 13.6eV and used 1meV' 11.6K. For atomic (or condensed) matter, i.e. for a
of the order of aH , the temperature T0 is rather low. However, in the notable case of liquid helium
(He4, g = 1, the atomic mass m = 4), whose density is 0.146g/cm3 (very low) we have

0.146g/cm3 =
Nm

V
=

m

a3
=

1

a3
· 4

6 · 1023
g , (12)

where m = 4/Ng is the mass of a molecule, N = 6.022 · 1023 being Avogadro’s number; hence we
obtain a ' 3.6Å ' 6.7aH , and the very low temperature T0 ' 3.15K. This temperature is close to
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the temperature 2.19K of the λ-point of the liquid helium four,[1] where an anomaly is observed
in the temperature dependence of the specific heat.

Below the temperature T0, where the chemical potential µ vanishes, the Bose-Einstein distribution
in (1) is peaked upon the zero-energy level; this is called the Bose-Einstein condensation. In this
range of temperatures the energy

E = g
∑
k

ε

exp [(ε− µ) /T ]− 1
(13)

is given by the integral

E0 = g
V

4π2

(
2m

h̄2

)3/2

T 5/2
∫

dx · x3/2

exp(x)− 1
; (14)

the integral in (14) is Γ(5/2)ζ(5/2), where Γ(5/2) = 3
√

π/4 and ζ(5/2) ' 1.34, so that we may
write

E0 = 0.77NT 5/2/T
3/2
0 ; (15)

hence the heat capacity at constant volume

cv = 1.925N (T/T0)
3/2 =

5

2

E0

T
. (16)

The entropy is easily obtained by integrating cv/T with respect to the temperature; we obtain
S0 = (5/3)E0/T and the free energy F0 = E0 − TS0 = −2E0/3; we note that for µ = 0 the
thermodynamic potentials Φ and Ω are given by F0 = Φ0− p0V = Nµ + Ω0 = Ω0. The pressure p
is given by p0 = −(∂F0/∂V ) at constant temperature, and from (14) we obtain p0 = (2/3)E0/V ,
where we note that the pressure does not depend on the volume, as expected for particles condensed
on the zero-energy level.

All the above thermodynamic results are valid for T < T0, where the chemical potential vanishes,
and the particles condense gradually on the zero-energy level. What happens near T0 and beyond
this temperature, where the condensate is gradually destroyed? According to the discussion above
all the thermodynamic quantities are continuous functions of temperature, including the chemical
potential µ and its first derivative with respect to the temperature. In the limit of high temperature
the chemical potential increases rather drastically, and the Bose-Einstein distribution becomes
the Boltzmann distribution of a classical ensemble of particles; the same happens, of course, for
a highly dilute ensemble of paticles, in both cases the quantum correlations becoming less and
less effective. As it is well-known, the nature of these correlations originates in the existence of
the energy levels, and the possibility of the identical particles to occupy indiscriminately these
energy levels. Using the Boltzmann distribution for high temperatures we obtain strightforwardly
µ ∼ −(3/2)T ln T from (2) and the well-known classical energy E = (3/2)NT ; hence the heat
capacity at constant volume cv = 3N/2. It is indeed remarkable how close this value is to 1.925N
obtained from (16) at T0. The vanishing temperature slope of the classical heat capacity cv = 3N/2
is compared usually with the temperature slope 2.89N/T0 of the heat capacity (16) at T = T−0 ,
whence the conclusion that the phase transition at T0 is of third-order.[2] It is, however, worth
remarking that the λ-anomaly of the liquid helium indicates rather a singularity in the specific
heat, i.e. a second-order phase transition.[3]

Let us turn now to compute the energy for T slightly above T0. The regularization procedure used
in estimating the number of particles in (5) is not practicable in this case. Instead, we make use
of general thermodynamic properties. As it is well-known the grand-partition potential

Ω = gT
∑
k

ln {1− exp [(µ− ε) /T ]} (17)
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may be integrated by parts and gives Ω = −2E/3; on the other hand, ∂Ω/∂µ = −N , so that
E = E0 + (3/2)Nµ, where E0 is the energy below T0, as given by (15), for µ = 0. We use for
µ its value given by (10), and, in order to keep the same order of approximation as that used in

deriving this µ we should use N (T/T0)
3/2 for N , as follows from (6) for T > T0. The energy for

T > T0 is therefore given by

E = 0.77NT 5/2/T
3/2
0 − 0.81N

(
T 5/2/T

3/2
0

) [
1− (T0/T )3/2

]2
, (18)

whence one can see that the heat capacity cv is continuous at T0, but its slope at T+
0 is−0.77N/T0.[4]

The phase transition at T0, with its jump in the temperature slope of the specific heat, is plagued,
in addition, by the divergent fluctuations in the occupancy number of particles on the zero-
energy level,

〈
(nk − 〈nk〉)2

〉
= 〈nk〉 + 〈nk〉2 for k = 0, which shows, as expected, the inadequacy

of the equilibrium statistical mechanics in treating the critical phenomena. The fact that the
Bose-Einstein distribution of an ensemble of ideal bosons is not appropriate for describing the
Bose-Einstein condensation does not mean, however, that the Bose-Einstein distribution is not
compatible, and would not allow (and indicate), a phase transition. Indeed, suppose, for instance,
as the behaviour of this distribution indicates, that there is a certain temperature Tc below which
all the particles condense, more or less abruptly, on the zero-energy level. Then we get from (1)

N = gN
1

exp (−µ/T )− 1
, (19)

whence the chemical potential
µ = −T ln (1 + g) (20)

for this ordered state. Above Tc the particles are in a highly disordered state, as if the temper-
ature would be extremely high; in this case the Bose-Einstein distribution becomes formally the
Boltzmann distribution, and we obtain the chemical potential

µ = −3

2
T ln T . (21)

An estimate of Tc is obtained by equating the two expressions for the chemical potential given by
(20) and (21). For liquid helium g = 1 and we get Tc = 22/3 ' 1.59K, which is close to the λ-point
temperature 2.19K. The estimate can be improved by noting that the nature of the distribution
changes (from Bose-Einstein to Boltzmann) around µ ∼ T , so that Tc ' e2/3 ' 1.95K.

Finally, it is worth mentioning perhaps what happens in one or two dimensions. The integral
in (2) is singular in this case for a vanishing chemical potential, so that (1) is satisfied for finite
values of µ (at non-zero temperatures); therefore, in one and two dimensions we have not even an
indication of an anomalous behaviour, and no phase transition.
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