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Abstract

Additional information is given, concerning the scattering of non-relativistic charges by

electromagnetic radiation confined in the focal region of the laser beams, which is relevant for

the experimental investigation. Scattering angles, separation angles and momentum transfer

are computed and multiple-photon emission and absorption regions are identified. The cross-

section is estimated and the region of high momentum transfer is discussed. Particular cases

of transverse scattering and longitudinal "scattering" are presented, as well as the elliptical

polarization of the radiation. The effect caused by the confined radiation on the scattering

by an external potential is included.
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The scattering of non-relativistic charges by electromagnetic radiation has been investigated in
Ref. [1]. The charges envisaged in Ref. [1] are electrons or ions, and the electromagnetic radiation
is confined to the focal region of the laser beam, which has a finite spatial extension d. This
scattering process is distinct from the Kroll-Watson scattering,[2] where the charges are immersed
in the laser radiation and are scattered by atomic or nuclear targets. Further details are given in
the present paper, which may be useful for experiments aimed at checking the predictions of Ref.
[1].

We assume optical lasers with photon frequency of the order ω = 1015s−1 (wavelength λ of the
order 1µm) and the dimension d of the focal region of the order a few tens of photon wavelengths
(e.g., d ≃ 3·10−3cm). In the non-relativistic approximation the electric field E = E0 sinωt is purely
oscillating in time (t), where E0 is its amplitude, for linear polarization (its spatial dependence
may be neglected, as well as the radiation magnetic field). The non-relativistic approximation
requires | e | A0/mc2 ≪ 1, where e is the particle charge, m is the particle mass, A0 = cE0/ω
is the amplitude of the vector potential and c (= 3 × 1010cm/s) is the speed of light in vacuum.
This condition imposes E0 ≪ 108esu for electrons and E0 ≪ 1011A(esu) for ions, where A is the
mass number of the ion. The laser intensity (I = cE2

0/8π) is limited to 1018w/cm2 for electrons
and 1024w/cm2 for ions.

The cross-section of charge scattering by electromagnetic radiation given in Ref. [1] is

dσn =
pfn
pi
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where Jn is the Bessel function of (integral) order n, pi and pfn are the initial and final momenta
of the projectile, pn = pfn − pi is the momentum transfer, V (r) denotes an external potential,
dΩ is the scattering solid angle and ~ is the Planck constant. For brevity, we omit the suffix n of
the cross-section (dσ), the final momentum (pf) and the momentum transfer (p). The integral in
equation (1) is performed over the spatial region of dimension d. The initial and final momenta
are related by the law of energy conservation

p2f/2m = p2i /2m+ n~ω ; (2)

this relation indicates scattering processes associated with emission and absorbtion of multiple
photons.

We neglect for the moment the external potential V (r) in equation (1). The cross-section due
solely to the radiation scattering can be written as

dσ =
pf
pi

(mnω

2π~

)2

| Kn |2 dΩ , (3)

where

Kn =

∫

drJn(ar)e
−iqr , a = eE0/~ω , ~q = p , (4)

or

Kn =

∫

dxJn(ax)e
−iq‖x

∫

dr⊥e
−iq⊥r⊥ , (5)

where the vectors r = (x, r⊥), q = (q‖,q⊥) have been decomposed along two directions, one
parallel with a (components x and q‖) and the other perpendicular to a (components r⊥ and q⊥).
The integral with respect to r⊥ shows that q⊥ is approximately of the order 1/d and the integral
can be approximated by d2. Within this approximation we can see that the momentum transfer
reduces to p = ~q‖, i.e. the momentum is transferred along the electric field E0 (a). We omit the
suffix ‖ in q‖ and writes Knd

2 = In, where

In =

∫

dxJn(ax)e
−iqx , ~q = p ; (6)

since | a |=| e | E0/~ω ≪ 1/d and q = p/~ ≪ 1/d, we may extend the integration in this
integral to the whole space. The restriction of the momentum transfer to the direction E0 implies
a cylindrical geometry for the scattering; the integration over angle ϕ in equation (3) leads to
formally replacing pf sin θdϕ by ~/d; therefore, the cross-section given by equation (3) becomes

dσ =
~d3

pi

(mnω

2π~

)2

| In |2 dθ . (7)

We pass now to the momentum conservation law

p = pf − pi , (8)

where p is directed along the electric field E0 and pf = Rnpi, Rn =
√

1 + n~ω/Ei from the energy
conservation law given by equation (2), Ei = p2i /2m being the initial energy. Let us assume that
the electric field E0 makes an angle α with the initial direction of the projectile; it is sufficient to
assume 0 < α < π/2. We parametrize the vectors occurring in equation (8) by p = p(cosα, sinα),
pf = pf(cos θ, sin θ) and pi = (1, 0) and get from equation (8)

p cosα = pf cos θ − pi , p sinα = pf sin θ (9)



J. Theor. Phys. 3

and

sin(α− θ) =
sinα

Rn
. (10)

The solutions of this latter equation are

θn = α− arcsin
(

sinα
Rn

)

,

θn = α− π + arcsin
(

sinα
Rn

)

;

(11)

we can see that the scattering angles take discrete values, like for a diffraction scattering; the
angles in the first row of equation (11) range from 0 to α, while those in the second row are
comprised between α− π and 0. The momentum transfer given by equations (9) is

p = pi
n~ω/Ei√

cos2 α+n~ω/Ei+cosα
, 0 < θn < α ,

p = −pi

(

√

cos2 α + n~ω/Ei + cosα
)

, α− π < θn < 0 .

(12)

There exist a few special scattering angles, according with these equations. For n → ∞ the
scattering angles are α and α− π, i.e. the scattering takes place along the electric field (in both
directions), with an infinite momentum and energy transfer. For n = 0 the scattering is elastic
and it takes place at angles 0 and 2α−π; the momentum transfer is zero for θ0 = 0 and −2pi cosα
for θ0 = 2α − π. For θn0

= α − π/2, where n0 is given by Rn0
= sinα (n0 = −(Ei/~ω) cos

2 α)
the scattering takes place along the direction perpendicular to the electric, with the momentum
transfer −pi cosα. For 0 < θn < α and α − π < θn < 2α − π the scattering is associated with
photon absorption (n > 0), while for 2α − π < θn < 0 the scattering implies photon emission.
All this information is shown in Fig. 1. The final momenta pf can be obtained by a graphical
method. In the plane made by the vectors pi and E0 we draw a succession of concentric spheres
with radii pfn = pi

√

1 + n~ω/Ei, n integer; the points of the intersection of these spheres with the
line parallel with E0 and passing through the point indicated by the vector pi give the scattering
momenta pfn.

In order to get an observable diffraction pattern the integer n should take many values in the
vicinity of n = 0 and n0. (On the other hand, n must be limited, of course, to the maximum
number of photons N ≃ E2

0d
3/8π~ω ≃ 4× 105E2

0 comprised in the scattering region). Therefore,
we should impose the condition ~ω/Ei ≪ 1. From equations (11) the angle separation is given by

∆θn =
sinα

2R2
n

√

R2
n − sin2 α

~ω

Ei
; (13)

we can see that for large the diffraction maxima coalesce. In the vicinity of n = 0 the separation
angle is given by

∆θ0 ≃ tanα · ~ω

2Ei
, (14)

while the separation angle near n0 it is

∆θn ≃
√

~ω/Ei∆n

2 sinα(1 + ∆n~ω/Ei sin
2 α)

, (15)

where ∆n = n− n0 > 0; we can see that the diffraction maxima are more separated in this region
in comparison with region n ≃ 0. In order to have a good resolution, the separation angle ∆θ0
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Figure 1: Special scattering angles for electric field E0, initial momentum pi, final momentum pf

and momentum transfer p and 2p; the regions with n > 0 correspond to photon absorption, while
the region with n < 0 corresponds to photon emission. The line n = n0 = −(Ei/~ω) cos

2 α, where
Ei is the projectile energy and ~ω is the photon energy indicates the scattering angle θ = α−π/2.

should not be too small; for instance, a good resolution would be ∆θ0 ≃ 10−3, which imposes Ei

of the order 1keV (for ~ω = 1eV ).

We turn now to the estimation of the cross-section given by equation (7). ‘

By using the generating function of the Bessel functions

eiz cosα =
∑

n

inJn(z)e
inα , Jn(z) =

(−i)n

2π

∫ π

−π

dαeiz cosα−inα , (16)

we get
In = (−i)n

∫ π

−π
dαe−inαδ(a cosα− q) . (17)

The integral in equation (6) can be computed immediately, with the result

In =
2(−i)n

√

a2 − q2
cosnα0 , (18)

where 0 < α0 = arccos(q/a) < π and | q |< a. For q ≪ a, α0 ≃ π/2 and I2k ≃ 2/a does not
depend on k. The cross-section in this case is given by

dσ2k ≃ ~d

π2pi

(

~ω

eE0d

)2(

~ω

~2/2md2

)2

k2dθ . (19)

This result is valid for scattering angles θ ≃ 0 (forward scattering), where the momentum transfer
is small. With the numerical data used here and Ei = 1keV , E0 = 108esu the differential cross-
section given by equation (19) is of the order ≃ 10−8k2. For larger scattering angles odd-order
diffraction maxima appear and the diffraction spots increase in intensity (the projectile acquires
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more momentum transfer along directions parallel with the electric field). In the emission region
n < 0 the momentum transfer is of the order pi. For large momentum transfer the denominator
in equation (18) may vanish; then, it should be replaced by

√

a/d, and the cross-section given by
equation (19) acquires an additional factor of the order (| e | E0d/~ω).

For | q |>| a | the integrals given by equation (6) are zero. It follows that the momentum
transfer given by equations (12) is limited to | p |<| e | E0/ω (the diffraction spots disappears for
| p |<| e | E0/ω, in particular they are absent in the limit n → ∞). Indeed, in equation (6) we
may limit ourselves to n ≥ 0 and a, q > 0. The integrals In reduce to

Ln = [1 + (−1)n]Lc
n + [1− (−1)n]Ls

n , (20)

where

Lc
n =

∫ ∞

0

dxJn(x) cosλx , Ls
n =

∫ ∞

0

dxJn(x) sinλx (21)

and λ = q/a > 1; further on, by an integration by parts,

Lc
n =

1

2λ

(

Ls
n+1 − Ls

n−1

)

(22)

for n ≥ 1. The integral Ls
n is known[3]:

Ls
n =

cos(nπ/2)√
λ2 − 1

[

λ+
√
λ2 − 1

]n , λ > 1 . (23)

We can see that the integrals Ln, n ≥ 0 are zero for λ > 1.

Two particular cases may be worth discussing. First, let us assume that the initial momentum pi

is perpendicular to the electric field E0 (transverse scattering, α = π/2). The scattering angles are
given in this case by cos θn = 1/Rn, the momentum transfer is pn = pi tan θn and the separation
angles are ∆θn =

√

~ω/nEi/2R
2
n (Rn =

√

1 + n~ω/Ei) for n ≥ 0 (there exists only absorption).
For α = 0 (longitudinal "scattering") there is no scatering, the motion takes place along the
direction of the electric field E0; the final momenta are given by pfn = pi

√

1 + n~ω/Ei, with
absorption for n > 0 and emission for 0 < n < −Ei/~ω (providing ~ω < Ei).

The contribution of theexternal potential V (r) to the corss-section given by equation (1) ca be
estimated by using the Fourier transform of the potential. The momentum transfer is not confined
to the direction of E0 anymore. The diffraction maxima are placed on the circles resulting from
the intersection of the spheres with radii pfn with the plane perpendicular to the plane made by
the vectors pi and E0, paralell with the vector E0and passing through the end point of pi.

The electric field with elliptic polarization has two components E1 sinωt and E2 cosωt in the plane
perpendicular to the propagation vector. The energy conservation reads p2f/2m = p2i /2m+ (n1 +
n2)~ω and the cross-section is given by

dσ =
pf
pi

∣

∣

∣

∣

m

2π~2

∫

dr[(n1 + n2)~ω + V (r)]Jn1
(eE1x/~ω)Jn2

(eE2y/~ω)e
− i

~
pr

∣

∣

∣

∣

, (24)

where n1,2 are integers. The diffraction maxima are placed on ellipses, which depend on the sum
n1 + n2, and have a variable intensity, depending on n1,2.

The information given in this paper may be relevant for the experimental investigation of the
scattering of non-relativistic charges by electromagnetic radiation confined in the focal region of
the laser beams.
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