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Abstract

The hysteresis curves are derived from energy conservation of the coupled polarization
(magnetization) and the external field, over a limited range of variation of the latter. The
two structural anomalies in the polarization of BaTiO3 are discussed.

1. Hysteresis

Although hysteresis in ferromagnets and ferroelectrics has been associated since long with the
existence of domains, and in spite of the existence of two current models of hysteresis,[1, 2]
its physical origin has not been revealed yet. The essence of the phenomenon consists in the
existence of two branches of the function P (E), where P is the polarization and E is the electric
field (or M(H), where M is the magnetization and H is the external field), over a limited range
of variation of E (H), whose origin is not elucidated. We present here a model which accounts for
this basic feature. Although the discussion is made here for ferroelectrics, the results apply also
to ferromagnets, as expected.

The ferroelectric materials consist of interacting molecular dipoles. In the presence of an external
electric field E the materials containing dipoles become polarized, i.e. they acquire a polarization
P which, usually, is proportional to the electric field E, such that we may write P = χE, where χ is
the electric susceptibility (we consider isotropic materials). At high temperature, the susceptibility
is proportional to 1/T , where T is the temperature (this is the Curie-Langevin-Debye law[3]-
[6]). The ferroelectric materials exhibit a critical temperature Tc (Curie temperature), where the
susceptibilty increases abruptly, with a characteristic λ-shaped pattern (the λ-point, Fig. 1); for
low temperature the polarization goes to a saturated, constant value, independent of E (at high
temperature the susceptibility goes like 1/(T −Tc) in this case; just below the Tc the susceptibility
has an exponential drop). This is a typical phase transition of the second kind.[7] In the absence
of the electric field the polarization is zero above Tc and goes to the saturation value for zero
temperature; just below the critical temperature it goes like (Tc−T )1/2) (Fig. 2). We say that on
passing through Tc from the above, the ferroelectric material suffers a transition to the polarized
state. The polarization of the polarized state may have an arbitrary orientation (for isotropic
materials), but it is directed along the external electric field, when such a field is applied.

In the polarized state there exists a depolarizing electric field generated by the surface of the
body; indeed, we note that the dipole field is oriented in the opposite direction with respect to
the direction of the external field. In order to minimize the energy, it is convenient to break the
polarized phase in small domains, oriented, in general, randomly. When an external electric field
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Figure 1: A sketch of the λ-point (E 6= 0).

is applied, the domains move (rotate), orient themselves partially along the field, and change, in
general, their dimension.[8, 9]

It is worth emphasizing that there exist three distinct notions related to the polarized state.
First, there exists the polarization, which is the dipole density; it has the dimension of a field
oriented along the external field. Then, there exists the depolarizing field, which is oriented in the
opposite direction to the external field. Third, there exists the dipolar interaction, which favours
the alignment of the dipoles; this is called internal field. All these quantities are inter-related.

Two basic observations are in order. First, we note that, in the polarized state, there exist two
variables, E and P , which are independent; second, we note that the motion of the domains may
allow an "interaction", a relationship, between these two variables. Consequently, we write the
change in the (free) energy of the polarized state as
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up to the second-order in powers of δE and δP , with some coefficients A, B, C; the first-order
terms in equation (1) are absent since we assume a change of energy at thermal equilibrium; the
applied electric field E and the polarization P it determines in the polarized state (with domains)
are equivalent with small variations δE and δP , such that we may replace δE and δP in equation
(1) by E and P (for small values of these quantities).

In order to have a minimum for the energy we assume C > 0 and AC > B2 in equation (1); then,
we note that P + (B/C)E and E are two independent electric fields, so that there is no reason to
have distinct coefficients in the energy for their contribution; therefore we assume C = A−B2/C,
or B2 + C2 = AC (and A > 0) ; equation (1) becomes
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Next, we note that P + (B/C)E is an effective field Ee; it should be related to the depolarizing
field; since the latter and E have opposite orientations, it is convenient to change B into −B;
if we introduce the notation B/C = λ (with the new B), the effective field can be written as
Ee = P −λE; we note that it is similar with the Weiss field Ew = E + λP (different λ); the latter
corresponds to the cooperative interaction which leads to the polarized phase.
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Figure 2: Polarization in the polarized state (E = 0).

The energy given by equation (2) should be a constant E0 at equilibrium; we denote 2E0/C by E2

c ,
where Ec is an electric field (coercitive field); equation (2) becomes

(P − λE)2 + E2 = E2

c . (3)

This equation shows that there exists a correlation between polarization and the electric field,
caused by the motion of the domains, such that their motion may proceed with a constant energy
for some limited values of the external field E; equaton (3) is valid for E ≪ Ec; for E ≫ Ec the
energy is not a constant anymore, and we have P = λE (and Ec = E). From equation (3) we get

P = λE ±
√

E2
c − E2 , (4)

where we can see that the two branches of P (E) appear naturally as a consequence of the energy
conservation; the functions P (E) given by equation (4) represent the (electric) hysteresis pattern
exhibited by ferroelectrics (or magnetic hysteresis for ferromagnetics) (Fig. 3). The motion of
P and E on the hysteresis curve can be parametrized by E = Ec sinϕ and P = sin(ϕ ± θ),
where cot θ = λ, the sign + corresponding to −π/2 < ϕ < π/2 and the sign − corresponding
to π/2 < ϕ < 3π/2. A similar procedure can be used for deriving other forms of hysteresis.
Variations of polarization and mechanical strain can be included in an energy variation of the
form given by equation (2) for the piezoelectric effect.

If the external field is oscillating in time, E = E0 sinωt, then, for E0 ≪ Ec and fast oscillations,

the mean values of the polarization are P
2

= E2

c − E2

0
and P 2 = E2
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0
, two relations

which offer access to the parameters Ec and λ; they correspond to the switching back and forth of
the domains between the two hysteresis curves. If E0 = Ec, then we have the parametric motion
with ϕ = ωt (the oscillating motion takes place along the hysteresis loop).

2. Structural anomalies in BaTiO3

The effective field in ferroelectrics
Ew = E + λP (5)

includes the internal field λP beside the external electric field E; this is the Weiss molecular field,
where the parameter λ remains to be determined (λ in equation (5) is different from λ introduced
in the previous section).[10, 11] Indeed, it has been shown in Ref. [12] that the dipolar interaction
between two dipole moments is −nd2 (up to an immaterial numerical factor), where n is the
density of dipoles. In the polarized phase this interaction leads to an interaction energy −nzdd of
the dipole d, where z is the number of nearest neighbours and d is the mean value of the dipole
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Figure 3: A sketch of the hysteresis curve.

moment; since nd is the polarization P , we may write this internal field as zP , which is precisely
the Weiss field with λ = z (up to a numerical factor).

For a distribution of dipoles ±d0, we get the polarization

P = nd = nd0 tanhβd0(E + λP ) , (6)

where β = 1/T is the inverse of the temperature T . For E = 0 this equation gives the transition
temperature (Curie temperature)

Tc = λnd2
0
; (7)

indeed, the dipolar interaction nd2
0

may generate ferroelectricity.[12] For T > Tc the polarization
is zero, while for T < T0 the polarization increases from zero (where it goes like (Tc − T )1/2) to
the saturation polarization P0 = nd0. For E 6= 0, equation (6) gives the λ-shaped curve of the
polarization as a function of temperature (and the Curie law of the susceptibility χ ∼ 1/(T − Tc)
for T ≫ Tc). For T ≪ Tc we may neglect E in equation (6) and the polarization is given
approximately by

P ≃ nd0 +
CT

d0λ
, (8)

or

P = P0 +
Cd0
a3Tc

T , (9)

where a is the mean separation distance betwen dipoles (n = 1/a3), λ is substituted from equation
(7) and the constant C (C > 0) is undetermined (it is different from C used in the previous section);
equation ([9]) is valid over a limited range of variation of the temperature, and C depends on this
range; more exactly, P0 should also be viewed as a fit parameter. These parameters (C and P0)
can be determined by fitting the curve given by equation (9) to the experimental data.

Ferroelectricity is often associated with structural transitions.[13] For instance, the Curie transition
in BaTiO3 is accompanied by a structural transition from a cubic symmetry to a tetragonal
symmetry. Moreover, there exist in this material two temperatures T1,2 < Tc where structural
modifications associated with first-order phase transitions appear (Fig. 4).[14] They have the
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Figure 4: Two anomalies in BatiO3.

form of two δ-shaped anomalies of the polarization occurring at two temperatures T1,2 < Tc (the
polarization current may have two δ

′

-shaped anomalies, slightly shifted due to a temperature
hysteresis). In this case, the deviation from a monotonous T -function in equation (9) is provided
by a change

δa = a1∆T1δ(T − T1) + a2∆T2δ(T − T2) (10)

in the lattice constant (dipole density), where a1,2 are two undetermined constants and ∆T1,2 are
the widths of the two anomalies; indeed, any structural modification proceeds by a variation in the
magnitude of the lattice constant in one direction followed by a variation in the opposite direction;
we assume here that the two variations are equal; equation (10) describes two such changes, which
generate two changes in the polarization (equation (9)) given by

δP = −
3Cd0
a4Tc

[a1T1∆T1δ(T − T1) + a2T2∆T2δ(T − T2)] . (11)

This equation may serve to determine the parameters a1,2 from experimental data. There exists
an exchange of heat Q1,2 between dipoles and the lattice, due to these anomalies, given by Q1,2 =
3(a1,2/a)P

2

1,2, where P1,2 are the polarizations at T1,2. We can see that this inference agrees with
the internal energy given in the previous section (∼ P 2). On this occasion, we should note that
there exists an electrocaloric effect associated with hysteesis, given by

∆T =
1

c

∮

T (∂P/∂T )dE , (12)

where c is the heat capacity and equation (9) is used; integration in equation (12) is extended to
the whole hysteresis curve. We note that the heat exchanged with the external field in a hysteresis
loop is

Q =
∮

PdE = 2
∫ Ec

−Ec

dE
√

E2
c − E2 = πE2

c . (13)

Finally, we note that the structural anomalies given by equation (11) are expected to be associated
with anomalies in specific heat, piezoelectric response and optical spectra (the latter arising from
the dipole modes called dipolons in Ref. 10).
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