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Abstract

The dynamics of the electron cloud of heavy atoms in an external, oscillating electric

field is analyzed within the linearized Thomas-Fermi theory. It is shown that the electron

screening reduces appreciably the magnitude of the external fields with optical frequencies,

while the electron motion generates an additional, internal electric field, oscillating with the

much higher frequency of the atomic dipolar eigenmodes. A resonant regime is identified for

external frequencies close to the hiher eigenfrequencies, which may lead to an appreciable

increase of the internal electric field in heavy atoms.

Global dynamics. We adopt here the linearized Thomas-Fermi theory for heavy atoms, i.e. for
atoms with atomic number Z ≫ 1. This theory gives the correct binding energy of heavy atoms
(−16Z7/3eV ) and predicts giant dipole oscillations of the electron cloud.[1] We describe in this
paper the dynamics of the electron cloud of such atoms in an external, oscillating electric field
E = E0 sinωt, with amplitude E0 and frequency ω, oriented along the z-axis.

According to this theory, the electrons in heavy atoms move in a self-consistent screened potential
ϕ = (Ze)e−qr/r and the equilibrium electron distribution is n = (Zq2/4π)e−qr/r, where −e is
the electron charge, r is the distance from the atomic nucleus and q is a variational parameter
(Thomas-Fermi screening wavevector) which is determined from the minimum of the energy. The
total energy of the electrons is a function W (q); it may be expanded in powers of δq = q − q0
about the equilibrium value q0 of the screening wavevector as

W = W0 +W1δq +
1

2
W2δq

2 + ... , (1)

where W0 = W (q0), W1 = ∂W/∂q |q0, W2 = ∂2W/∂q2 |q0. At equilibrium W1(q0) = 0; this
equation which gives the equilibrium value of the screening wavevector q0 = (6/π2)1/3Z1/3/aH ,
where aH = ~

2/me2 ≃ 0.53Å is the Bohr radius (~ is Planck’s constant and m is the mass of
the electron).[1] We can see that the radial distribution r2n of the electrons has a maximum for
R0 = 1/q0 ∼ aH/Z

1/3; equation (1) can be re-written as

W = W0 +
1

2
W2δR

2 + ... , (2)

with new functions W0,2 of R0; for instance, W2 = ∂2W/∂R2 |R0
, where R = 1/q. We introduce

the notation W2 = Zmω2
0 in equation (2), where[1]

ω2
0 =

27

2π2

Z2e2

ma3H
; (3)
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we recognize in equation (3) a plasma frequency with an average electron density of the order
Z/(a3H/Z); indeed, the effective volume is of the order a3H/Z (linear dimension aH/Z

1/3 ∼ 1/q0).
The frequency ω0 corresponds to the energy ~ω0 ≃ 28 · Z(eV ) (ω0 ≃ 4.5Z × 1016s−1). It is easy
to see from equation (2) that ω0 is the eigenfrequency of atomic dipolar breathing mode with
the dynamical coordinate δR; equations (2) predict a giant atomic dipolar resonance for ω = ω0;
damping shold be included, which is given by radiation loss; at resonance, higher-order terms
should also be included, arising in the expansion of the energy W (equation (2)); they lead to the
ionization of heavy atoms, as described by the linearized Thomas-Fermi theory.[1]

The electric field produces a global, uniform displacement u of the electron cloud, along the z-
direction; this displacement changes the density and, therefore, it changes also the parameter R0;
the change is δR = u cos θ, where θ is the angle made by the radius R with the direction of the
external field (the z-direction). We can see that this change is local (it depends on θ); in these
conditions we should re-write the energy W as

W = W0 +
1

2

∫

drw2u
2 cos2 θ + ... , (4)

where the density w2 does not depend on position; it is W2/V , V being the volume of integration.
From equation (4) we get

W = W0 +
1

2
Zmω2

0u
2 + ... , (5)

where ω0 is now given by

ω2
0 =

9

2π2

Z2e2

ma3H
; (6)

a factor 1/3 occurs in the new squared frequency, which amounts to averaging cos2 θ. We write
this squared frequency as ω2

0 = 4πne2/m, where the average density is n = (9/8π3)Z2/a3H .

The equation of motion of the coordinate u is

ü+ ω2
0u = −eE0

m
sinωt , (7)

with the solution (with vanishing initial conditions)

u = eE0

m(ω2
−ω2

0
)

(

sinωt− ω
ω0

sinω0t
)

, (8)

The above description assumes a displacement much smaller than the dimension of the atom.
The displacement given by equation (8) satisfies this condition for any reasonably high electric
field, since ω0 is a high frequency (ω ≪ ω0); indeed, from equation (8) we get E0 ≪ (mω2

0aH/e) ≃
107Z2esu (the non-relativistic limit for electrons is E0 ≃ 108esu for ω = 1015s−1, which corresponds
to a laser intensity ≃ 1018w/cm2).

Let us assume an assembly of electrical charges q at equilibrium, subject to a local displacement
u; such a displacement produces a density change δn = −ndivu, where n is the equilibrium
density; it follows that we have a charge density imbalance δρ = −nqdivu and a current density
δj = nqu̇; Gauss’s equation reads divE = −4πnqdivu, where E is the electric field generated by
this charge imbalance; or div(E + 4πnqu) = 0. Therefore, the polarization of the assembly is
P = nqu. If the time variations of u are slow, i.e. if the frequency ω of the displacemnt u is such
that ω ≪ c/l, where l is the dimension of the assembly, then Gauss’s equation has the solution
Ei = −4πP = −4πnqu; Ei is the internal (depolarizing) field. We note that this field appears
even if the displacement is uniform, due to the variation of the displacement at the surface of the
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assembly (if any); it is a dipolar field. For atoms, it is due to the displacement of the electron
cloud with respect to the atomic nucleus.[2]

We apply the above considerations to the results obtained here, with q = −e and n = n; making
use of equation (8), we get the polarization

P = − ne2E0

m(ω2
−ω2

0
)

(

sinωt− ω
ω0

sinωot
)

(9)

and the internal electric field

Ei =
ω2

0
E0

ω2
−ω2

0

(

sinωt− ω
ω0

sinωot
)

(10)

(both directed along the external field); also, from equation (9) we can get the polarizability. The
total electric field inside the atom is

Et = Ei + E =
ω2

ω2 − ω2
0

E0 sinωt−
ωω0

ω2 − ω2
0

E0 sinω0t ; (11)

since ω ≪ ω0, it can be written as

Et ≃ −
ω2

ω2
0

E0 sinωt+
ω

ω0

E0 sinω0t . (12)

We can see that the external field E0 sinωt is appreciably reduced inside the atom, by a factor
(ω/ω0)

2 ≃ 1.6× 10−3/Z2 (for ω = 1015s−1), due to the electron screening; at the same time, there
appears inside the atom an electric field with frequency equal to the high atomic eigenfrequency
ω0 ≃ 2.6Z × 1016s−1 (equation (8)), reduced only by the factor ω/ω0 ≃ 4× 10−2/Z in comparison
with the amplitude of the external field; we note that both fields act inside the atom (i.e., it acts
on the electrons too), the higher-frequency component being able to excite nuclear states. Also,
we note that the latter field occurs in any kind of external excitation.

Finally, we note that the self-consistent potential ϕ = (Ze)e−qr/r of the linearized Thomas-Fermi
theory consists of the nucleus potential Ze/r and the electron potential ϕe = Ze(e−qr − 1)/r;
the latter produces a radial electric field Ee = −Ze [1− (1 + qr)e−qr] /r2, which for qr ≪ 1 is
Ee ≃ −Zeq2/2. The variation of this field with respect to the parameter q gives an internal field
Ei = (Ze/R0)

3δR, which is of the same order of magnitude as the internal field given by equation
(10).

The apreciable reduction in magnitude of the external field obtained here originates in using the
same average density n both in the frequency given by ω2

0 = 4πnq2/m and in the internal field
Ei = −4πnqu (where q denotes the charge). This circumstance follows from the general equation
of motion. Indeed, Newton’s equation of motion along a direction is mü = qE + qEi, where E is
the external field and Ei is the internal field; if we write qEi = −mω2

0u, we get the equation of
motion mü +mω2

0u = qE; the condition qEi = −mω2
0u is ensured by the two assumptions made

here, involving the average density n.

Local dynamics. The kinetic energy of a free electron gas is V (~2k5
F/10π

2m), where V is the
volume, kF is the Fermi wavevector and m is the mass of the electron; if kF varies in space and
if the gas is sufficiently dense, we may view a local free electron gas with the kinetic energy
∆V (~2k5

F/10π
2m); then, the total kinetic energy may be written as

Ekin =

∫

dr
~
2k5

F

10π2m
, (13)
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or, using the density n = k3
F/3π

2,

Ekin =

∫

dr
3(3π2)2/3

10

~
2

m
n5/3 ; (14)

the total energy of a heavy atom with atomic number Z (Z ≫ 1) can be written as

E =

∫

drεkin(n)− Ze2
∫

dr
n(r)

r
+

1

2
e2

∫

drdr′
n(r)n(r′)

|r− r′|
, (15)

where εkin(n) = [3(3π2)2/3/10]~2n5/3/m is the local kinetic energy; the second term on the right
in equation (15) is the Coulomb electron-nucleus attraction and the third term is the Coulomb
electron-electron repulsion (−e is the charge of the electron).

The first-order variation of this energy is

δE(1) =

∫

dr
∂εkin
∂n

δn− Ze2
∫

dr
δn

r
+ e2

∫

drdr′
n(r′)

|r− r′|
δn ; (16)

at equilibriun it should be zero, i.e.

∂εkin
∂n

−
Ze2

r
+ e2

∫

dr′
n(r′)

|r− r′|
= 0 ; (17)

this equation gives the equilibrium density n0(r). A convenient way of solving equation (17) is to
introduce the self-consistent potential

ϕ(r) =
Ze

r
− e

∫

dr′
n(r′)

|r− r′|
(18)

and to notice that it satisfies the Poisson equation

∆ϕ = −4πZeδ(r) + 4πen(r) ; (19)

equation (17) becomes
∂εkin
∂n

− eϕ = 0 , (20)

i.e.

(3π2)2/3
~
2

2m
n2/3 − eϕ = 0 , (21)

or
~
2k2

F

2m
− eϕ = 0 ; (22)

this is the Thomas-Fermi model; it is a quasi-classical model; it does not provide the binding of
the electrons in atoms.

The basic assumption of the Thomas-Fermi model is a slightly inhomogeneous electron gas; in
accordance with this assumption we write k2

F = 2kFkF and k3
F = 3k

2

FkF , where kF is a parameter;
also, we introduce the parameter q2 = 4kF/πaH , where aH = ~

2/me2 is the Bohr radius; we get
n = (q2/4πe)ϕ and a linearized Poisson equation

∆ϕ = −4πZeδ(r) + q2ϕ (23)

(equation (19)) with the solution ϕ = (Ze/r)e−qr and n0 = (Zq2/4πr)e−qr. Making use of this
solution in the total energy given by equation (15) and linearizing its expresion with respect to kF ,
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we get the binding energy of the atom as a function of the parameter q; minimizing this energy
with respect to q, we get the equilibrium value

q = (6/π2)1/3
Z1/3

aH
(24)

of this parameter; including quantum-mechanical corrections, we get the binding energy −16Z7/3eV ,
in agreement with the experimental data.[1] We can see that the electron density in heavy atoms
is concentrated in the region r < R, where R is given by qR = 1, i.e. R = (π2/6)1/3aH/Z

1/3,
which is a much smaller radius of the atom than the Bohr radius aH (Z ≫ 1). The variation
of the parameter q (i.e. of the "radius" R) leads to the breathing eigenmodes of the atom with
the frequency ω0 given by equation (3); in the presence of an electric field this frequency gives
the polarization and the screening of the external electric field, as described above; higher-order
terms in the expansion of the energy with respect to the parameter q gives non-linearities which
may lead to ionization.[1] All these are related to the global dynamics of the electron cloud of
the heavy atoms, which moves as a whole. In order to distinguish the Thomas-Fermi model from
the linearized Thomas-Fermi theory we refer sometimes to the former as the 3/2-Thomas-Fermi
model (since n ∼ ϕ3/2 in this model).

Let us investigate the local dynamics of the electron cloud in heavy atoms. First, we note that
external electromagnetic fields with wavelengths smaller than the radius R involve not only electric
fields, but magnetic fields too; second, for small wavelengths the electromagnetic fields behave as
a collection of photons (e.g., X-rays or gamma rays), and their interaction with the electrons is
quantum-mechanical; third, the linearized Thomas-Fermi theory is not valid for distances too close
to the atomic nucleus (where quantum-mechanical corrections should be included). Therefore, we
may leave aside such small spatial variations of the electron density. On the other hand, we
notice that the number of electrons inside the sphere with radius R is Z(1− 2/e) ≃ 0.27Z, while
the number of electrons outside this sphere is 2Z/e ≃ 0.73Z; we can see that it is meaningful
to consider electromagnetic fields with small spatial variations (long wavelengths), which affect
mainly the tail of the electron density in heavy atoms; in this case, we may neglect the magnetic
field (this treatment may be termed a quasi-dipolar approximation).

The second-order variation of the total energy E given by equaton (15) is

δE(2) =
1

2

∫

dr
∂2εkin
∂n2

(δn)2 +
1

2
e2

∫

drdr′
δn(r)δn(r′)

|r− r′|
, (25)

where the derivatives are taken for n = n0. We represent the density variations as δn = −n0divu,
where u(t, r) is a displacement field; these variations ensure the conservation of the total number
of electrons; the second-order variation of the total energy becomes

δE(2) =
1

2

∫

dr
∂2εkin
∂n2

n2
0(divu)

2 +
1

2
e2

∫

drdr′n0(r)n0(r
′)
div[u(r)] · div[u(r′)]

|r− r′|
; (26)

with the kinetic energy

T =
m

2

∫

drn0u̇
2 (27)

of the displacement field u we get the lagrangian of this field

L =
m

2

∫

drn0u̇
2 −

1

2

∫

dr
∂2εkin
∂n2

n2
0(divu)

2 −
1

2
e2

∫

drdr′n0(r)n0(r
′)
div[u(r)] · div[u(r′)]

|r− r′|
; (28)
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the equation of motion for the field u is

mn0ü− grad

[(

∂2εkin
∂n2

)

n2
0divu

]

− e2grad

[

n0

∫

dr′
n0(r

′)div[u(r′)]

|r− r′|

]

= n0Fex , (29)

where Fex is the external force; or

mü−
(3π2)2/3~2

3mn0
grad

(

n
5/3
0 divu

)

−
e2

n0
grad

[

n0

∫

dr′
n0(r

′)div[u(r′)]

|r− r′|

]

= Fex . (30)

In the long-wavelength limit the density is, practically, a constant n0 = k
3

F/3π
2 = 3Z2/16π3a3H (we

may see that the Z electrons are included in a volume with dimension of the order aH/Z1/3 ≃ R);
this density is comparable with the average density n in equation (6); equation (30) becomes

mü−
(3π2)2/3~2

3m
n
2/3
0 grad · divu− e2n0grad

∫

dr′
div[u(r′)]

|r− r′|
= Fex

′ (31)

for an external plane wave Fex = −eE0e
−iωt+ikr (c/ω ≫ aH/Z

1/3, where c is the speed of light
in vacuum) and E0 is the amplitude of the electric field, the solution is u = u0e

−iωt+ikr; the
amplitude of the displacement field is given by

ω2u0 − ω2
0

(ku0)k

k2
− v2(ku0)k = eE0 , (32)

where

ω2
0 =

3

4π2

Z2e2

ma3H
(33)

and

v2 =
31/3

(16π)2/3
~
2Z4/3

m2a2H
. (34)

We can see that the longitudinal displacement is

u0 =
eE0

ω2 − Ω2
(35)

with the frequency of the eigenmodes given by

Ω2 = ω2
0 + v2k2 ; (36)

these modes are dispersive plasmons; they are the breathing modes derived above (now dispersive).
The plasma frequency ω0 given by equation (33) is comparable with the plasma frequency given
by equations (3) and (6); it arises from the Coulomb repulsion (at equilibrium); the Fourier
transform of the Coulomb potential is involved in its expression. The velocity v (v ≪ c) arises
from the variation of the kinetic energy. Equation (35) shows that the screening is present, as
described above; the full solution of eqution (31) includes the excitation of the eigenmodes too.
From equation (32) we can see that the transverse modes are free.

Finally, we note in equation (31) that a global displacement u implies grad · divu of the order
u/a2, where a ≃ aH/Z

1/3; in this case the Coulomb repulsion in equation (31) is vanishing and
the kinetic term gives a frequency ω ≃ ω0.
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