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Abstract

The tensor of the seismic moment is derived from the displacement caused by the seismic

waves on the Earth’s surface, by using its vectorial representation for a shear-faulting focal

region, energy conservation and a covariance condition. It is assumed that the seismic waves

are produced in a homogeneous isotropic body by tensorial forces localized both in space

and time. It is shown that only three components of the seismic moment are independent,

according to the number of independent parameters in the seismic-wave displacement. Addi-

tional information is obtained, regarding the earthquake energy, duration, focal volume, focal

strain, the rate of focal strain and focal slip. The results are extended to an isotropic seismic

moment, which may correspond to explosions.
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Introduction. This paper presents a derivation of the seismic-moment tensor from the displace-
ment produced by the seismic waves at Earth’s surface. This derivation may be viewed as a
solution to the inverse problem in Seismology.

It is generally accepted[1]-[5] that typical tectonic earthquakes originate in a localized focal region
with dimensions much smaller than the distance to the observation point. Also, it is accepted that
the duration of the earthquakes is much shorter than any time of interest. The seismic waves are
generated by a tensorial force density

Fi = MijTδ(t)∂jδ(R−R0) , (1)

where Mij is the symmetrical tensor of the seismic moment (i, j = 1, 2, 3 denote the cartesian
coordinates), T is the (short) duration of the earthquake, t denotes the time, R is the position
of the observation point and R0 is the position of the focus; δ denotes the Dirac delta function.
Summation over repeating suffixes is assumed throughout this paper. The force density given by
equation (1) ensures a vanishing total force and a vanishing total angular momentum. The force
density which implies the δ-functions corresponds to an elementary earthquake. A superposition
of such elementary forces describes structured focal regions, extended both in space and time. The
function δ(t) in equation (1) is localized over a short duration T centered on t = 0; its magnitude
is of the order 1/T . Similarly, the function δ(R − R0) is localized over a small volume V ≃ l3

with dimension l, centered on R0, its magnitude being of the order 1/V ; V is a measure of the
focal volume.
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The elastic displacement u produced by the force F in a homogeneous isotropic body is solution
of the equation

üi − c2t∆ui − (c2l − c2t )∂idivu =
1

ρ
MijTδ(t)∂jδ(R−R0) , (2)

where ρ is the density of the body and cl,t are the velocities of the longitudinal and transverse
waves; in the far-field region these waves are given by[1]-[5]

ul = −
Tδ

′

(t− R/cl)

4πρc3lR
M4n , ut =

Tδ
′

(t− R/ct)

4πρc3tR
(M4n−M) , (3)

where R denotes the position measured from the focus (placed at R0), Mi = Mijnj and M4 =
Mijninj , n = R/R being the unit vector along the direction from the focus to the observation
point. The waves given by equations (3) are shell spherical waves, localized over radial distances
of the order ∆R ≃ cl,tT (thickness of the shell). The longitudinal and transverse waves are
known as P - and S-wave, respectively. Since δ

′

(t−R/cl,t) is of the order 1/T 2, we may write the
displacement produced by these waves as

vl = −
1

4πρTc3lR
M4n , vt =

1

4πρTc3tR
(M4n−M) . (4)

We consider these displacements as input data for our problem. We can see that they imply three
independent parameters: the magnitude of the longitudinal displacement vl (one parameter) and
the transverse vector vt (two parameters, vlvt = 0); we consider that the unit vector n is known.
From equations (4) we get

M = −4πρTR
(

c3l vl + c3tvt

)

; (5)

we note, from the second equation (4), that M2 > M2

4
(v2t > 0). Also, we assume that the

parameters ρ, cl,t and R are known. The problem is to determine the components Mij of the
seismic moment by using equations (5), where the displacement is measured on Earth’s surface.
This may be viewed as the inverse problem in Seismology. We can see, on one hand, that we
need additional information for solving this problem and, on the other hand, only three out of
six components Mij are independent. We show below that additional information is provided
by the vectorial representation of the seismic moment for a shear-faulting focal region (Kostrov
representation), the energy conservation and the requirement of covariance of the equations (with
respect to rotations and translations); the covariance condition warrants results independent of
the reference frame. The results are extended to the special case of an isotropic seismic moment.

At first sight, we may say that for given displacements vl,t and given T we may solve equations
(5) and get the three independent components of the seismic moment Mij . Unfortunately, leaving
aside that the other three components of the seismic moment are left as free parameters by such a
procedure, the measurement of the duration T from ∆r/cl,t, where ∆r is the projection of ∆R on
Earth’s surface, is dependent on the local frame, and, consequently, would not provide a suitable
input data for covariant equations.

The seismic moment and seismic energy are basic concepts in the theory of earthquakes.[1]-[4] The
seismic moment has emerged gradually in the first half of the 20th century, the first estimation of a
seismic moment being done by Aki in 1966.[6] The relations between the seismic moment, seismic
energy, the mean displacement in the focal region, the rate of the seismic slip and the earthquake
magnitude are recognized today as very convenient tools for characterizing the earthquakes.[7]-[9]

The inverse (inversion) problem in Seismology[10] is solved usually by determining the seismic-
moment components from information provided by far-field seismic waves at different locations
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and times,[11]-[15] or free oscillations of the earth, long-period surface waves, supplemented, in
general, with additional relevant information (constraints; see Ref. [16] and references therein).
Besides noise, the information provided by such data may reflect particularities of the structure
of the focal region and the focal mechanism which are not included, usually, in equations, like the
structure factor of the focal region, both spatial and temporal, or deviations from homogeneity
and isotropy. In particular, waves measured at different locations (or times) may lead to overde-
termined systems of equations for the unknowns Mij , and the solutions must be "compatibilized".
A proper procedure of compatibilization may lead, in fact, to redundant equations, if the co-
variance of the equations is not ensured. Indeed, the experimental data may often be used in a
non-covariant form, which makes the results dependent on the reference frame. We may add that
the normal modes of the pure free oscillations do not imply a source of waves, while surface waves,
having sources on the surface, have a very indirect connection to the body waves generated in the
focal region. Surface displacement in the main shock of an earthquake is often used, which has a
very indirect relevance for the earthquake source and mechanism.

Vectorial representation. The additional information needed for solving equations (5) is the
vectorial representation of the seismic moment for a fault (Kostrov, dyadic, representation).[1, 2,
8, 9] It reads

Mij = 2µV (siaj + aisj) , (6)

where s is the unit vector perpendicular to the fault surface, a is the unit displacement vector
along the fault surface (as = 1), µ is the Lame coefficient (µ = ρc2t ) and V is the volume of
the focal region. It is worth noting an uncertainty (indeterminacy) of the dyadic construction
of the seismic-moment tensor given by equation (6). Indeed, first, we can see that the seismic
moment is invariant under the inter-change s←→ a. This means that from the knowledge of the
seismic moment Mij we cannot distinguish between the two orthonormal vectors s and a (fault
direction and fault slip). This symmetry of equation (6) indicates, in fact, that we have formally
two mutually perpendicular faults; this may explain the presence of the volume V in equation (8)
(instead of the fault area). Another symmetry of the seismic moment given by equation (6) is
s←→ −a (and s←→ −s, a←→ −a), which means that we cannot distinguish between the signs
of the vectors s and a.

A formal derivation of equation (6) is provided by assuming that the torque represented by the
seismic-moment components can be written as Mij = fihj , where fi is the i-th component of the
force and hj is the j-th component of the arm of the force. For a fault, the force component
can be written as fi ≃ 2µSu0

i/l, where u0

i ≃ lai is the i-th component of the slip along the fault
and S ≃ l2 is the area of the fault (the pre-factor 2 arises from the integration over the two
oriented surfaces of the fault). The arm of the force is hj ≃ lsj, such that we get Mij ≃ 2µV aisj ,
which, by symmetrization, leads to equation (6). Also, such qualitative considerations lead to the
representation

u0

ij =
1

2
(siaj + aisj) =

1

4µV
Mij (7)

for the focal strain.

We can see that equation (6) reduces the number of independent components of the seismic
moment to four; indeed, apart from the parameter V , we have three other independent parameters
in equation (6) from the two mutually orthonormal vectors s and a. The reduction of the number
of independent components is reflected by the two conditions M0 = Mii = 0 (traceless tensor Mij)
and Mijsjsi = 0 (or Mijaiaj = 0).

Energy conservation. As it is well known,[17] from equation (2) we get the law of energy
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conservation
∂
∂t

[

1

2
ρu̇2

i +
1

2
ρc2t (∂jui)

2 + 1

2
ρ(c2l − c2t )(∂iui)

2

]

−

−ρc2t∂j(u̇i∂jui)− ρ(c2l − c2t )∂j(u̇j∂iui) = u̇iMijTδ(t)∂jδ(R) .

(8)

According to this equation, the external force performs a mechanical work in the focus
(u̇iMijTδ(t)∂jδ(R) per unit volume and unit time). The corresponding energy is transferred to
the waves (the term in the square brackets in equation (8)), which carry it through the space (the
term including the div in equation (8)). It is worth noting that outside the focal region the force
is vanishing. Also, the waves do not exist inside the focal region. Therefore, limiting ourselves
to the displacement vector of the waves, we have not access to the mechanical work done by the
external force in the focal region. This circumstance arises from the localized character of the
focus.

From equation (8) the mechanical work in the focal region is given by

W =
∫

dt
∫

dRu̇0

i (t)MijTδ(t)∂jδ(R) , (9)

where u
0 is the focal displacement (slip) and u̇

0 is the rate of focal slip; equation (9) can also be
written as

W =
1

2

∫

dRu0

iMij∂jδ(R) , (10)

where the estimation of the integral leads to W ≃ 1

2
aiMijsj ; using equation (6) we get W ≃ µV =

ρc2tV . We can see that the mechanical work done in the focal region is of the order of the elastic
energy stored in this region, as expected.

In the far-field region we can use the decomposition into longitudinal and transverse waves
(curlul = 0, divut = 0) in equation (8); this decomposition leads to

∂el,t
∂t

+ cl,tdivsl,t = 0 , (11)

where

el,t =
1

2
ρ (u̇l,t)

2 +
1

2
ρc2l,t (∂iul,tj)

2 (12)

‘is the energy density and
sl,ti = −ρcl,tu̇f

l,tj∂iu
f
l,tj (13)

are the components of the energy flux densities per unit time (the flow vectors). From equation
(11) we can see that the energy is transported with velocities cl,t (as it is well known). The volume
energy E =

∫

dR(el + et) is equal to the total energy flux

Φ = −
∫

dtdR (cldivsl + ctdivst) = −
∫

dt
∮

dS (clsl + ctst) . (14)

Making use of equations (3), we get

E = Φ =
4πρ

T
R2

(

clv
2

l + ctv
2

t

)

; (15)

this relation gives the energy released by the earthquake in terms of the displacement measured
in the far-field region and the (short) duration of the earthquake.

By equating W = ρc2tV obtained above with energy E (equation (15)), we get

V =
4π

c2tT
R2

(

clv
2

l + ctv
2

t

)

, (16)
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an equation which relates the focal volume to the earthquake duration.

Seismic moment. We turn now to equation (6). Making use of the reduced moment mij =
Mij/2µV and mi = Mi/2µV = Mijnj/2µV , equation (6) leads to

si(na) + ai(ns) = mi . (17)

By using equations (5) and (16) the components mi of the reduced moment are given by

mi = −
T 2

2R
·
c3l vli + c3t vti
clv2l + ctv2t

. (18)

We solve here the equations (17) for the unit vectors a and s, subject to the conditions

s2i = a2i = 1 , siai = 0 . (19)

Since M0 = 0 and M2 > M2

4
, we have m0 = mii = 0 and m2 > m2

4
(where m4 = mijninj and

m2 = m2

i ). From equation (18) we have mi < 0. We write equations (17) as

αs+ βa = m , (20)

where we introduce two new notations α = (na) and β = (ns). We assume that the vectors s, a
and n lie in the same plane, i.e.

βs+ αa = n . (21)

This condition determines the system of equations and ensures the covariance of the solution; it
is the covariance condition. From equations (20) and (21) we get

2αβ = m4 , α2 + β2 = m2 = 1 . (22)

The equality m2 = 1 (covariance condition) has important consequences. It implies M2 = (2µV )2,
such that we can write the seismic moment from equation (6) as

Mij = M (siaj + aisj) ; (23)

it follows the magnitude of the seismic moment (Mij
2)

1/2
=
√
2M .[18] In addition, from E = W =

µV (equation (10)) we have E = M/2 = (Mij
2)

1/2
/2
√
2. The magnitude (Mij

2)
1/2

=
√
2M =

2
√
2E may be used in the Gutenberg-Richter relation lg (Mij

2)
1/2

= 1.5Mw + 16.1, which defines
the magnitude Mw of the earthquake; in terms of the earthquake energy this relation becomes
lgE = 1.5(Mw − lg 2) + 16.1 (where lg 2 ≃ 0.3). We note that an error of an order of magnitude

in the seismic moment (M , E, (Mij
2)

1/2
) induces an error ≃ 0.3 in the magnitude Mw.

Further, from equation (18), the equality m2 = 1 implies

T = (2R)1/2
(clv

2

l + ctv
2

t )
1/2

(c6l v
2

l + c6tv
2
t )

1/4
(24)

which gives the duration T of the earthquake in terms of the displacements vl,t measured at
distance R. Inserting T in equation (16), we get the focal volume

V =
π(2R)3/2

c2t

(

clv
2

l + ctv
2

t

)1/2 (

c6l v
2

l + c6t v
2

t

)1/4
, (25)
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the magnitude parameter M and the energy E of the earthquake

M = 2E = 2µV = 2πρ(2R)3/2
(

clv
2

l + ctv
2

t

)1/2 (

c6l v
2

l + c6tv
2

t

)1/4
(26)

in terms of the displacements vl,t measured at distance R. In addition, eliminating R between
equations (24) and (25) we can express the focal volume as

V =
πT 3

c2t
·
c6l v

2

l + c6tv
2

t

clv2l + ctv2t
. (27)

The solutions of the system of equations (22) are given by

α =

√

√

√

√

1 +
√

1−m2
4

2
, β = sgn(m4)

√

√

√

√

1−
√

1−m2
4

2
(28)

and α←→ ±β, α, β ←→ −α, −β. Making use of equations (18) and (24), we get the parameters
mi and m4

mi = −
c3l vli + c3tvti

(c6l v
2

l + c6tv
2
t )

1/2
, m4 = −

c3l (vln)

(c6l v
2

l + c6tv
2
t )

1/2
(29)

in terms of the wave displacements. Finally, we get the vectors

s = α
α2

−β2m− β
α2

−β2n ,

a = − β
α2

−β2m+ α
α2

−β2n ;
(30)

from equations (20) and (21). These solutions are symmetric under the operations s ←→ a

(α ←→ −β) and s ←→ −a (α ←→ β, or α, β ←→ −α, −β). The seismic moment given by
equation (23) is determined up to these symmetry operations. Inserting these vectors in equation
(23) we get the solution for the components of the seismic moment

Mij =
M

1−m2
4

[minj +mjni −m4 (mimj + ninj)] . (31)

Equation (30) is manifestly covariant. The covariance condition m2

i = 1 reduces to three the four
independent components of the seismic tensor.

Having known Mij and T we may give an estimate of the focal strain u0

ij = Mij/2M and the focal

strain rate u0

ij/T ; the focal slip is of the order l ≃ V 1/3, where V is given by equation (25).

The eigenvalues of the seismic moment (given by equation (23)) are ±M (we leave aside the
eigenvalue zero); the corresponding eigenvectors w are given by aw = ±sw, which imply mw =
±nw; the vectors w are directed along the bisectrices of the angles made by s and a, or m and
n (w ∼ s ± a). The associated quadratic form Mijxixj = const is a rectangular hyperbola in
the reference frame defined by the vectors s and a; by using the coordinates u = sx and v = ax

in equation (23), the equation of this hyperbola is uv = const/2M. Actually, in the local frame
(coordinates xi), the quadratic form Mijxixj = const is a degenerate hyperboloid, consisting of
a family of parallel hyperbolas displaced along the third axis (perpendicular to the u- and v-
axes). This "seismic hyperbola" is an image of the geometry and the focal mechanism of the fault.
Making use of equations (23) and (30), this quadratic form can also be written as

2ξη −m4

(

ξ2 + η2
)

= const , (32)
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where the coordinates ξ = mixi and η = nixi are directed along the vectors m and n, respectively.

The asymptotics of this hyperbola are ξ = m4η/
(

1 +
√

1−m2
4

)

and η = m4ξ/
(

1 +
√

1−m2
4

)

(corresponding to the asymptotics u = (αξ−βη)/(α2−β2) = 0 and v = (−βξ+αη)/(α2−β2) = 0).

Isotropic seismic moment. An isotropic seismic moment Mij = −Mδij is an interesting par-
ticular case, since it can be associated with seismic events caused by explosions.[?] In this case
the transverse displacement (in equations (4)) is vanishing and M = −Mn, M4 = −M . From
equations (4) and (15) we get

M = −4πρTRc3l vl , E =
4πρR2

T
clv

2

l . (33)

We can see that vln > 0 corresponds to M > 0 (explosion), while the case vln < 0 corresponds to
an implosion. The focal zone is a sphere and the vectors s and a are equal (s = a) and depend on
the point on the focal surface. The force acting on the surface of this sphere generates a pressure,
and the seismic moment changes sign in the Kostrov respresentation

Mij = −2ρc2l V δij . (34)

Similarly, the energy is E = W = 1

2
M (M > 0), such that, making use of equations (33), we get

clT =
√
2Rvl,

M = 2πρc2l (2Rvl)
3/2 = 2ρc2l V , (35)

and the focal volume V = π(2Rvl)
3/2. These equations determine the seismic moment and the

volume of the focal region from the displacement vl measured at distance R. A superposition
of shear faulting and isotropic focal mechanisms cannot be resolved, because the longitudinal
displacement vl includes indiscriminately contributions from both mechanisms.

Concluding remarks. This paper presents a derivation of the tensor of the seismic moment from
the displacement caused by the seismic waves at Earth’s surface (inverse problem in Seismology).
The derivation is made for earthquakes produced by tensorial forces localized both in space and
time in a homogeneous isotropic body. It makes use of the vectorial representation of the seismic
moment for a fault, the energy conservation and manifestly covariant equations. Addditional
information regarding the earthquakes energy and duration, as well as the focal volume, the focal
strain, the focal slip and the rate of the focal strain and the focal slip is given. The results are
extended to isotropic seismic moments, which correspond to explosions.
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