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We consider a (classical) gas of identical molecules (atoms), each with mass M at thermal equlib-
rium. As long as the thermal energy per molecule is smaller than the ionization (dissociation)
energy of a molecule, the thermal energy is taken up in translation, rotation, vibration, etc motion.
The coresponding thermal energy E per molecule for translation generates a molecular momentum
P, such that E = P 2/2M . If the thermal energy excedes the ionization (dissociation) energy Ei

the momentum and energy conservation laws are

P = p1 + p2 ,

E = p2
1
/2m1 + p2

2
/2m2 ,

(1)

where E is the excess energy which generates the momenta p1,2 of the two molecular fragments
(e.g., an ion and an electron) with masses m1,2. Equations (1) lead to

p2
1
− 2

µ

m2

P cos θ · p1 −
(

2µE − µP 2/m2

)

= 0 , (2)

where µ = m1m2/M is the reduced mass (M = m1 +m2) and θ is the angle made by P with p1;
the solutions of equation (2) are .

p1 =
µ

m2

P cos θ ±
√

2µE − µ

m2

P 2

(

1− µ

m2

cos2 θ
)

. (3)

Let us assume m2 ≪ m1 and E ≫ P 2/2m2; then, we get from equation (3) p1 ≃
√
2m2E and the

energies

E1 = p2
1
/2m1 ≃

m2

m1

E , E2 ≃ E ; (4)

we can see that the high amount of excess energy is taken by the lighter fragments, in the pro-
portion of the mass ratio, as expected (E1/E2 ≃ m2/m1); the magnitudes of the momenta are
close to each other (since P is small). In the opposite limit, when E ≪ P 2/2m2, the ionization
(dissociation) takes place in the forward direction (θ ≃ 0) and the energy is kept, practically,
by the heavier fragment. The same energy distribution is valid for ionization produced by high
electric fields.

In elastic binary collisions the two fragments preserve their energy distribution and the scattering
angles, only the relative momentum changes direction; this follows from the conservation laws

p1 + p2 = p
′

1
+ p

′

2
,

p2
1
/2m1 + p2

2
/2m2 = p

′
2

1
/2m1 + p

′
2

2
/2m2 ,

(5)
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where p
′

1,2 are momenta after collision; indeed, from the second equation (5) we get E2 = E
′

2
and

E1 = E
′

1
and, from the first equation (5), we get ϕ ≃ ϕ

′

, where ϕ is the angle made by p1 with
p2 and ϕ

′

is the angle made by p
′

1
with p

′

2
.

The energy P 2/2M + E is a measure of the mean energy; it is (2N + N0)T , where N is the
original number of atoms which are ionized and N0 is the number of atoms which remain neutral.
Since E ≫ P 2/2M we may write (2N + N0)T ≃ E. On the other hand we have from the above
calculations E1 ≃ m2

m1

(2N +N0)T = NT1 and E2 ≃ (2N +N0)T = NT2, where the temperatures
T1,2 are given by T1 ≃ m2

m1

(2 +N0/N)T and T2 ≃ (2 +N0/N)T . We can see that the ratio of the
two temperatures is T1/T2 ≃ m2/m1. We are in the presence of two distinct gases (e.g., ions and
electrons), or three distinct gases if we include the neutral atoms, all at their own equilibrium.

Let us consider two fragments with masses m1,2, m2 ≪ m1; making use of the energy Ec of their
center of mass and the energy Er of their relative motion we can express the (kinetic) energies of
the two fragments as

E1 =
m1

M
Ec +

m2

M
Er + 2

√

µ

M
EcEr cosα ≃ Ec ,

E2 =
m2

M
Ec +

m1

M
Er − 2

√

µ

M
EcEr cosα ≃ Er ,

(6)

where M = m1+m2 is the total mass, µ = m1m2/M is the reduced mass and α is the angle made
by the relative momentum with the center-of-mass momentum. Since Ec,r are conserved in elastic
collisions, we can see, that, in general, only the angle α (which is a free parameter) may change in
collisions; since the center-of-mass momentum is conserved, this implies a rotation of the relative
momentum. This change induces an energy re-distribution between the two particles. However,
for m2 ≪ m1, the energies of the two particles remain, practically, unchanged, as derived above
from equation (5); for high-energy the lighter fragment carries the (higher) relative energy, while
the heavier fragment carries the (lower) center-of-mass energy.

Let us assume that a force act between the two fragments, which may lead to a bound state. The
energy of the center of mass is conserved, such that the kinetic energy of the heavier fragment is
conserved, E1 = Ec. The relative energy Er is changed, such that the kinetic energy E2 of the
lighter fragment is changed. It becomes

E
′

2
=

m2

M
Ec + Ekin =

m2

M
Ec +W −Q ≃ W −Q , (7)

where the first term arises from the motion of the lighter particle together with the heavier fragment
(common velocity), Ekin is the kinetic energy of the lighter particle in the potential well with depth
W and −Q is the binding energy. The total energy of the lighter particle is E ′

1
= E

′

1
−W ≃ −Q.

The high kinetic energy of the lighter particle is transferred, approximately, in the high kinetic
energy of the lighter particle in the bound state; the potential well ensures the binding energy of
this particle. The kinetic energy of the bound state remains the low kinetic energy of the heavier
particle.


