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Abstract

Arguments are given for the impossibility of accounting for the phase transitions by
statistical mechanics.

With usual notations the grand-partition function is written as

Z =
∑

eβ(µN−E) = e−βΩ , (1)

where the summation extends over all distinct configurations. The thermodynamic quantities are
obtained from the grand-partition potential Ω = −pV = F − µN (dΩ = −V dp = −Ndµ− SdT )
by

E − µN = ∂ (βΩ) /∂β , N = −∂Ω/∂µ . (2)

In the thermodynamic limit, the summation over an infinite number of configurations in (1), as
well as for an infinite number of contributions to the energies, may lead, at least in principle,
to a singularity of Z, and, consequently, to a (logarithmic) singularity in βΩ. The same infinite
summation may also lead, for some values of β and µ, to a discontinuos Z, in which case its
derivatives are singular;[1] one deals in this case with different analytic (real) functions for Z, and
if one of them happens to be zero then βΩ has again a logarithmic singularity. This corresponds
to what is called condensation phenomena, as, for instance, first-order phase transitions, and
Bose-Einstein condensation.[2] Some of thermodynamic quantities may be discontinuos in this
case, some others may have singularities, but in all cases the fluctuations are singular, as a
consequence of vanishing Z, or of the singular behaviour of its derivatives (as, for instance, the
singular entropy).[3]

A particular case is that where a discontinuity with vanishing Z may appear for certain few
configurations, which may lead to a continuos βΩ and E, but a singularity in the higher derivatives.
This would correspond to what is called cooperative phenomena, and, typically, such a singularity
may appear in the specific heat c = ∂E/∂T , as for the second-order phase transitions; since
the only type of singularities which may appear are logarithmic singularities (via (1)), one may
suppose c ∼ − ln |t|, where t = T −Tc, Tc being the critical temperature. In this case E ∼ −t ln |t|
and Ω ∼ t2 ln |t|.

On the other hand, the origin of such a singularity in the cooperative phenomena comes from the
condensation in the configurational space, i.e. from a certain mode of motion which may lead to
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an ordered state. One may label these modes by wavevectors k, and let the condensing mode in
the k-space be k =0, as for a homogeneous system. Since the k-mode competes with t = 0 in the
singular behaviour one may write the grand-partition potential as

Ω ∼
∫
0
dk · kd−1 · ln (z + km) , (3)

in a d-dimensional space; where z is a certain function of t (and µ), and the exponent m determines
the k-dependence of the mode energy. The quantity z has a series expansion

z = zc + z′c · t + (1/2) z′′c · t2 + ..., (4)

and for a singular behaviour zc should vanish, zc = 0. However, z comes from the statistical
weights in (1), and, as such, it is always positive. If z vanishes for certain values of T it follows
that its first derivative should also vanish there, z′c = 0, i.e. z should have a vanishing minimum
at the critical temperature. Equation (3) becomes then

Ω ∼ −
∫
0
dk · kd−1 · ln

(
t2 + km

)
, (5)

and leads to Ω ∼ t2d/m ln |t|; on comparing it with t2 ln |t| one obtains m = d, i.e. the only
condensing modes that may lead to a phase transition should have the energy ∼ kd, where d is
the space dimension.[4]

However, the statistical weights for fluctuations appear in this case as exp (βΩk) = exp
(
− ln

(
t2 + kd

))
,

such that they would always imply ∫
0
dk · kd−1 · 1

t2 + kd
, (6)

i.e. a logarithmic singularity. The phase transitions are prevented by fluctuations, and attempting
to account for them by statistical mechanics is bound to fail.[5]

Let us assume an ensemble of N particles (or sub-ensembles) described by a set of variables ni,
either continuous or discrete, taking positive values; they may be viewed as corresponding to the
mechanical states of the particles, states which are identified by their energy. With usual notations
the partition function[6] can be written as

Z ∼
∑

n1,n2,...

exp [−βε (n1, n2, ...) + S (n1, n2, ...)] ∼

∼
∫

dn1dn2... · exp [−βε (n1,n2, ...) + S (n1,n2, ...)] ∼ (7)

∼
∫

dn · exp [−βε (n) + S (n)] ,

where n = {ni}. Let us introduce the notations

Φ(n) = −βε (n) + S (n) ,

∂Φ(n)

∂ni

= Φi(n) = −βεi (n) + Si (n) , (8)

∂2Φ(n)

∂ni∂nj

= Φij(n) = −βεij (n) + Sij (n) ,



J. Theor. Phys. 3

and assume that there exists n0 such that

Φi(n0) = −βεi (n0) + Si (n0) = 0 ; (9)

denoting Φ0 = Φ(n0) and

Φij(n0) = −βεij (n0) + Sij (n0) = −Lij(n0) (10)

the partition function can be estimated by steepest descent as

Z ∼ eΦ0

∫
dn · exp

[
−1

2
Lij(n0) (ni − ni0) (n− nj0)

]
. (11)

Let us denote by λq the eigenvalues of the (non-singular) part of the matrix Lij, and we shall be
interested in the singular behaviour of these eigenvalues, i.e. λq →∞;; then, the relevant part of
the partition function[7] reads

Z ∼
∏
q

(1/λq)
1/2 =

∏
q

µ1/2
q , (12)

where µq = 1/λq → 0. Under this circumstance, it is easy to see that the remaining contributions
to the integral in (7), in comparison with the integral in (11), i.e. those coming from higher-order
derivatives of Φ, are vanishing quantities of higher orders, so that the steepest descent gives a
highly accurate estimate of the partition function. The relevant part of the free energy F is then
given by

βF ∼ −1

2

∑
q

ln µq . (13)

Further on, we shall assume that the ensemble of particles is spatial, so that we may identify q
with a point, i.e. a vector q in this space; and for a uniform ensemble we may write

βF ∼ −1

2

∫
dq · qd−1 · ln µq , (14)

where d is the space dimension.

The eigenvalues λq depend on n0, λq = λq(n0), and their singular behaviour should be such that
there should exist a point n0 = m for which an integrable set of them, at least, behave like
µq = 1/λq ∼ |n0 −m|α, where, obviously, the exponent α (α > 0) does not depend essentially
on q or β; naturally, the dependence of q and β is to be included in a small term denoted by γq,
which are going to vanish for that integrable set of singular λq. We do not write explicitly the
dependence of γq on β but we keep in mind the presence of β in γq. Therefore, we may take λq as
being given by

µq = 1/λq ∼ |n0 −m|α + γq . (15)

From λq(n0) given by (15) we can obtain, in principle, Φij(n0) given by (10), and hence Φi(n0);
then, by using Φi(n0) = 0 as given by (9) we can obtain both the critical temperature, i.e. βc,
from Φi(n0 = m) = 0, and |n0 −m| as a function of β − βc; which, finally, will give us µq as a
function of β − βc and γq. As one can see the critical temperature is associated with the point m
in the space of the variables {ni}.

In order to carry out practically these computations we need further simplifying assumptions.
Specifically, we shall assume Φ(n) =

∑
i Φ(ni), as for an ensemble of independent particles. Under

this assumption the matrix Lij = −Φij is diagonal, and preserving the q-labels we may write

λq = −Φqq(n0) = [(n0q −mq)
α + γq]

−1
; (16)
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whence

−Φq(n0) = βεq (n0q)− Sq (n0q) =

=
∫ n0q

mq

dn · [(n−mq)
α + γq]

−1
+ const = (17)

=
∫ n0q−mq

0
dn · [nα + γq]

−1 + const = 0 .

From (17) we obtain at once

const = βcεq(mq)− Sq(mq) = 0 (18)

and

βεq (n0q)− Sq (n0q) = βcεq(mq)− Sq(mq) +
∫ n0q−mq

0
dn · [nα + γq]

−1 = 0 . (19)

The integral can be estimates as

∫ n0q−mq

0
dn · [nα + γq]

−1 ' M/γq −
M1−α

1− α
+

(n0q −mq)
1−α

1− α
, (20)

where the cut-off M is chosen such as the integral be independent of M ; this means M = γ1/α

and[8] ∫ n0q−mq

0
dn · [nα + γq]

−1 ' − α

1− α
γ

1
α
−1

q +
1

1− α
(n0q −mq)

1−α . (21)

Using this in (19) we find easily

n0q −mq ' [(1− α)εq(mq)]
1/(1−α) (β − βc)

1/(1−α) (22)

to the first approximation; hence, by using (16),

µq = 1/λq = (n0q −mq)
α + γq '

(23)

' [(1− α)εq(mq)]
α/(1−α) (β − βc)

α/(1−α) + γq .

In order to get a second-order phase transition one needs[9] α/(1−α) = 2 (compare, for instance,
(5) and (13)); hence we obtain α = 2/3.

Let us turn now to estimating averages of quantities depending on {ni} (or {nq}). We can expand
such quantities in powers of nq −mq, so that we are left with estimating averages of the type∫

dnq · (nq −mq)
δ · exp [−βε(nq) + S(nq)] , (24)

where δ is some positive exponent. We estimate this integral by steepest descent again, and show
that it is finite. Indeed, the equation

δ

n1q −mq

− βεq(n1q) + Sq(n1q) = 0 (25)
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can be solved for n1q by using

βεq (n1q)− Sq (n1q) = βcεq(mq)− Sq(mq) +
∫ n1q−mq

0
dn · [nα + γq]

−1 =

(26)

=
∫ n1q−mq

0
dn · [nα + γq]

−1 ' 3 (n1q −mq)
1/3

from (19) and (21) for α = 2/3 . We obtain n1q −mq = (δ/3)3/4, such that the second derivative
of (25) becomes

− δ

(n1q −mq)2
− (n1q −mq)

−2/3 = −4(δ/3)−1/2 ; (27)

the integral in (24) is therefore ∼ (δ/3)1/4. However, the average

(nq −mq)
δ ∼ (δ/3)1/4/Z ∼

√
λq (28)

and it is singular near the critical point, according to (23). Similarly, (nq −mq)
2δ ∼

√
λq, but

the fluctuations of these quantities imply
[
(nq −mq)

δ
]2

∼ λq, and they are more singular than

their averages. The most favourable situation is that where the singularities appear for few
configurations q, i.e. for q ∼ 0. In this case the statistical deviations are given by[10]

∑
q∼0

λq ∼
∫
0
dq · qd−1 1

(β − βc)
2 + θ(q)

, (29)

where d is the space dmension and θ(q) ∼ [3/εq(mq)]
2 γq, according to (23). On comparing this

with (6) we see that θ(q) should go like qd, and the fluctuations exhibit therefore a logarithmic
singularity at the critical point.

It is perhaps worth illustrating how the above computations work for some particular cases.
Suppose a classical ensemble of free particles in the three-dimensional space; the energy of each
particle can be written as

ε(n1, n2, n3) = ε0

(
n2

1 + n2
2 + n2

3

)
/L2 = ε0n

2/L2 , (30)

where L denotes the linear size of the spatial extension of the ensemble. The number of states
available to each particle is Γ ∼ n3, so that dΓ ∼ n2dn ∼ exp (2 ln n) dn, whence the entropy
S = 2 ln n. The partition function is therefore given by

Z ∼
∫

dn · exp
[
−βε0n

2/L2 + 2 ln n
]

; (31)

it can be easily estimated by steepest descent,

Z ∼ L3/ (βε0)
3/2 , (32)

which is the partition function of a classical ensemble.[11] In particular, (9) has the solution
n0/L = 1/

√
βε0. Obviously, there is no phase transition. For quantum gases of free, identical

particles we can write the energy as[12]

ε =
∑

i

εini , (33)
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where ni stand for the average occupancy of the i-th state partition.[13] The entropy can be
written as

S =
∑

i

[(1 + ni) ln (1 + ni)− ni ln ni] (34)

for bosons, and
S = −

∑
i

[(1− ni) ln (1− ni) + ni ln ni] (35)

for fermions. The partition function for a state i, as given by (7), is obtained strightforwardly as

Z ∼ {1− exp [−β (εi − µ)]}−1 (36)

for bosons, and
Z ∼ 1 + exp [−β (εi − µ)] (37)

for fermions, where we have introduced the chemical potential µ. The solution n0i to (9) is the
statistical occupation number, {exp [β (εi − µ)]∓ 1}−1. We note that the second derivative in
the expansion of the integrand exponent in this case is of the order of unity at equilibrium, so
that the remaining integral in the steepest descent does not contribute essentially to the partition
function. A particular situation occurs for bosons, where the Bose-Einstein condensation appears
for an infinite number of occupancy, i.e. mi → ∞ for i corresponding to the zero-energy level.
This shows again that a phase transition like the Bose-Einstein condensation can not be tackled
by equilibrium statistical mechanics.
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