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According to Quantum Mechanics the uncertainty in the position of a particle is ∆q > ~/∆p,
where ~ is Planck’s constant and ∆p is the uncertainty in momentum (Heisenberg’s uncertainty
relation). In the non-relativistic approximation we can make ∆p very large, such that q may be
measured accurately. The relativistic theory should impose a limit upon this accuracy. Indeed,
in E2 = p2c2 +m2c4 p is motion momentum, and m is the mass of the particle, E is its energy
and c is the speed of light in vacuum; the particle has a rest momentum mc. The accuracy in p
should be smaller than mc, such that, in the rest frame, ∆q > ~/mc for a relativistic particle.
This means that we cannot give the particle a well-defined coordinate, such that we cannot define
a wavefunction for it; we cannot have a well-defined, standard, relativistic Quantum Mechanics.1

If the particle is in motion ∆q > c~/E, and we need a high energy to define the coordinate; in the
ultra-relativistic case ∆q > ~/p = λ, where λ is the particle wavelength. This restriction agrees
with the definition of a quantum-mechanical particle by means of its wavefunction, but it does
not agree with the standard quantum-mechanical use of the wavefunction for any value of the
coordinate. In this respect Quantum Mechanics imposes a serious limitation upon the nature of
the particles.

Similarly, the time can only be measured relativistically with the accuracy ∆t > ~/mc2. These
relativistic limitations arise from the existence of the rest energy mc2, the rest momentum mc and
the limiting velocity c. We are in the situation to use Quantum Mechanics at relativistic velocities,
i.e. to use the notion of quanta, but without the standard use of wavefunctions defined at any
position and any moment. Indeed, the basic asset of the Quantum Mechanics is the existence of
quanta,2 but only for distances larger than their wavelength and for times longer than the period
of their frequency ω = E/~. It follows that particles can only be viewed as quanta which appear
and disappear, in interaction processes, without, necessarily, a determined time evolution. This
conclusion coincides with the standpoint of both Quantum Field Theory and Statistical Physics.
We may call it the quasiclassical standpoint, since it overlooks the wavelengths and wave periods.

It is worth noting that, although in non-relativistic Quantum Mechanis we have the Schrodinger
equation which gives a well-determined time evolution, this is limited by Heisenberg’s uncertainty
relations; in the relativistic theory the uncertainties in position and time acquire, partially, a

1L. Landau, "On the Quantum Theory of Fields", in Niels Bohr and the Development of Physics, ed. W. Pauli,
Pergamon Press (1955) and references therein; W. Heitler, The Quantum Theory of Radiation, Oxford University
Press (1944); L. Landau and R. Peierls, "Erweiterung des Unbestimmtheitsprinzips fur die relativistische Quan-
tentheorie", Z. Physik 69 56 (1931); L. Landau and R. Peierls, "Quantenelektrodynamik im Konfigurationsraum",
Z. Physik 62 188 (1930).

2A. Einstein, "Uber einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesicht-
spunkt", Ann. Physik 17 132 (1905).
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precise meaning, which precludes the definition of a wavefunction and its evolution equations.
This can be seen most directly by the impossibility of defining a conserved probability. It is
true that for fermions the spinors allow a probability, but this is done at the price of introducing
the antiparticles, i.e. particles with negative energy; by writing the field as a superposition of
ape

ipx + b+Pe
−ipx with four-dimesional notations), where ap are annihilation operators for particles

with positive energy and b+pare creation operators for particles with negative energy, we must admit
that the vacuum is full of antiparticles, which causes serious difficulties with infinite quantities.
The field equations satisfied by bosons do not allow probabilities.

It follows that we are left, at least in relativistic Quantum Mechanics, with describing quantum
transitions in interaction processes.

Let us assume an interaction energy (hamiltonian) V . Let us assume a wavefunction

ψ = e2πi
S

h , (1)

where S is the mechanical action (and h = 2π~). Obviously, this is a periodic function for ∆S =
h × integer. It follows that the (minimal) uncertainty relations read ∆p∆q ≃ h and ∆t∆E ≃ h
(the first-order variation defines the determined trajectory). They differ from the usual ones
∆p∆q ≃ 1

2
~, ∆t∆E ≃ 1

2
~, because the latter are derived by assuming the wavefunction defined

for any time and position; while, we see that it is meaningful only for periodicity ∆S = h×integer.
From equation (1) we get the variation

δψ = 2πi
δS

h
ψ (2)

and the relative change in the number of quanta

|δψ|2

|ψ|2
= (2π)2

|δS|2

h2
. (3)

Since the change in action, caused by the interaction V during the small duration τ , is δS =
−τδE = −τV , we get the relative change in the number of quanta per unit time

w = (2π)2
τ |V |2

h2
; (4)

this is the transition probability per unit time. According to the uncertainty relations we have
τ = h/∆E, where ∆E may be replaced by δ(∆E), in order to account for the energy conservation;
we get

w = (2π)2
|V |2

h
δ(∆E) =

2π

~
|V |2 δ(∆E) . (5)

The transition is performed by absorption and emission of quanta; δ(∆E) should account for the
energy conservation of this process. Moreover, the energy V involved in this process is the matrix
element Vfi between the final and initial states. Equation (5) becomes the standard formula for the
transition probability per unit time (Fermi’s golden rule). The multiplication by the probability
of the states is necessary.

According to its definition w is 1/τ , where τ is the transition time; from equation (4) we have
τ = ~/ | V | and w =| V | /~. This is valid as long as | V | is much smaller than the energies Ei,f ,
~ω involved in transition, where ~ω is the energy quantum which is responsible for transition.
Indeed, this condition is the condition of validity of the perturbation theory. It amounts to say
that the transition time τ should be much longer than the periods of the motions with energies
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Ei,f , ~ω. Indeed, in order to have a transition we need first to have well-defined states involved
in that transition. On the other hand we use the approximation τ = ~/∆E = ~δ(∆E), which
amounts to 1/ | V |= δ(∆E); this equality tells that the energy is conserved in transition with the
accuracy | V |. Therefore the transition rate is | V | /~ and the energy conservation is achieved
with the accuracy | V |.
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