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Plasma is an ensemble of positive and negative ions and neutral atoms (molecules), usually elec-
trically neutral; sometimes, it may include ionized small particles (dusty plasmas). The negative
"ions" may be electrons. A typical example of plasma is the electrolyte, consisting usually of a
species of positive ions, a species of negative ions, in equal numbers, arising from the dissociation
of a species of molecules, and neutral (undissociated) molecules. If the dissociation is weak, the
electrolyte is called a weak electrolyte; if the dissociation is extended, the electrolyte is called a
strong electrolyte; an extreme case is the ionic crystal. Another typical examples are the ionized
gas and the electrons in a metal. Although similar in many respects, there exists an important
difference between a plasma consisting only of ions (electrolyte) and a plasma which includes
electrons.

First, we should note that plasmas exist at finite temperatures; at zero temperature, the entropy
should be zero, and the most ordered state is an insulating, probably covalent, or ionic, solid; the
spectrum of a metal is continuous and it is difficult to define its zero-temperature limit.[1]

Second, in defining a plasma the problem of the degree of dissociation or ionization appears. If
the plasma is at equilibrium, i.e. if it has the same temperature for all species of particles, then
for gases and, to some extent also, for liquids, the degree of dissociation or ionization is given
by Saha equation.[2] Strong electrolytes may exist at room temperature, while for a reasonable
degree of ionization high temperatures are necessary. The assumption of equilibrium isi usually
fulfilled for electrolytes, but it is difficult to have it fulfilled for plasma with electrons, though it
may be fulfilled also in this case over some limited range of parameters. This is so because of the
great disparity between the electron mass and ion mass; as a consequence, the electrons take more
energy and have, usually, a much higher temperature than the ions; this is called a non-thermal
plasma.

The main problem for a plasma is to derive its cohesion, stability and thermodynamics. This
problem is complicated because of the presence of the Coulomb interaction. In ideal gases there is
no interaction and their thermodynamics is solved by the principle of statistical equilibrium. Cor-
rections to thermodynamics arising from interaction are solved by the van der Waals equation for
non-ideal gases; in particular, the van de Waals equation indicates a transition to the liquid state.
Such corrections are obtained, in general, by the so-called virial expansion, i.e. the expansion of
the thermodynamic potentials in series of powers of the density. A thermodynamics of liquids,
where the interaction is important, is described in Ref. [3]. The cohesion and the thermodynamics
of metals is given in Ref. [4]. In order to establish the thermodynamics of an interacting ensemble
we need first to solve the problem of the interaction, for knowing the stability, the cohesion, the
possible phases and the corresponding elementary excitations. Solving the problem of interaction
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looks like we should treat the ensemble at zero temperature. But this is an unphysical case, so
we need, in fact, to solve the problem of interaction at finite temperatures, which is an interesting
special case; e.g., this happens for superconductivity.

The key for solving the problem of the Coulomb interaction in plasma was given by Debye and
Huckel.[5] The long range of the Coulomb interaction gives rise to divergencies in the virial coef-
ficients, such that a direct virial expansion is not appropriate. Debye and Huckel[5] noticed that
there exists a self-consistency relation between the electrostatic potential generated by charges and
the charge density, which leads to a screened Coulomb potential; the screening length is governed
by the charge density and the temperature. A similar self-consistency relation exists for a Fermi
gas of electrons is metals, governed by the electron density and the quantum effects; it was used
in Ref. [4]. Moreover, in Refs. [4] and [6] a screened ion-ion interaction potential has been de-
rived, which acts between the same species of ions; this was achieved by applying consistently the
Debye-Huckel approach. These potentials exhibit equilibrium minima, which indicate a plasma
solid phase and a precursory liquid phase. These condensed plasma phases and the corresponding
transitions are of considerable interest, especially in plasmas with electrons, where they may be
attained by high pressure. The weak electrolytes are far from these transitions, and their ther-
modynamics is mainly that of a non-ideal plasma gas, where the original solution given by Debye
and Huckel,[5] and Onsager,[7] may sufice. The strong electrolytes or the extreme case of ionic
solids may exhibit such liquid and solid plasma phases. The Madelung method of estimating the
cohesion energy of an ionic solid is appropriate, but the liquid phase of strong electrolytes needs
further investigations.

For plasmas with electrons the high-density zone, where the liquid and solid phases occur, is
of interest. The current approaches, besides assuming a thermal plasma, treat the electrons as
pointlike particles (though the Debye-Huckel screened potentials are derived by assuming the
electrons statistically distributed with the Boltzmann density). The Coulomb potential exhibit
another difficulty, besides the long-range divergence (this latter divergence is solved by the screened
potentials). This additional difficulty arises from the short-range singularity of the Coulomb
potentials, which may appear when the electron positions are close to the ion positions, a situation
which may be present in the high-density range. Usually, this difficulty is removed by resorting
to quantum effects, or model-based hypotheses (ions as rigid spheres, or postulating a solid, for
instance). In such treatments it is necessary to make connection with the low-density region.
At first sight, it may appear that such calculations could be carried out by successive virial-type
corrections. Unfortunately, such an approach is not possible, since the inter-ionic potentials are, in
fact, pseudo-potentials, which depend on temperature and density, and their range varies widely
with density. At low densities the repulsive part of these potentials includes many ions, such that
the pairwise-type virial coefficients have little relevance. In addition, on one side the assumption
of pointlike electrons is not warranted at finite temperatures and, on the other side, there is
no need for this assumption because a careful analysis of the inter-ionic potentials indicates an
excluded volume at high densities, related to the screening length, which opens the way toward
a van der Waals equation of state. At high densities the screening length of the inter-ionic
pseudo-potentials is sufficiently small to provide an excluded volume for ions, where the bare
highly-repulsive Coulomb potential acts. This van der Waals equation for a plasma is derived in
Ref. [6], where the transitions gas-liquid-solid are identified. Over this whole range of densities
and temperatures the plasma behaves classically. Moreover, it is shown in Ref. [6] that the gas-
liquid transition does not occur for a thermal plasma and a perturbation series for the non-ideal
gas would converge slowly to the non-analytical behavior of the van der Waals equation in the
vicinity of the liquid and solid phases.

The theory of the classical plasma given in Ref. [6] gives parametric positions to the ions, while
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treating the electrons as distributed with a classical (Boltzmann) density; after solving the problem
of interaction, the ions, dressed by electrons, are treated statistically, with their own temperature
or with the same temperature as the electrons. It arises naturally the question whether the
electrolytes can be treated in a similar way. The answer is positive. We may view one species of
ions as "ions" with definite positions and the other species of ions as "electrons" endowed with a
density. The results are independent of which species of ions is chosen as "ions" and which is chosen
as "electrons". The reason for such a theoretical basis originates in the long-range character of
the Coulomb potential, which is effective over large spatial regions, and over large spatial regions,
which include many particles, we may always define a density of particles. With the notations of
Ref. [6] the equilibrium positions of the "ions" are given by Rij ≃ 2.73λ (as ≃ 1.68a0, a0 = q2/T )
(and the excluded volume of the liquid is given by a = 2λ (al = πa0)), while the "electrons" are
distributed over a distance a ≃ λ, i.e. a = 4πa0 about the "ions"; we may write
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which is close to an fcc lattice with 12 nearest neighbours, or
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which is very close to a bcc lattice with 8 nearest neighbours. We may say that this theory predicts
that the very strong electrolytes in their extreme (ionic-crystal) limit crystalize in a bcc lattice
(the same is true for ionic crystals). In the above notations λ is the screening length, a is the
mean separation distance between the ions of the same species, q is the ion charge and T is the
temperature.
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