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Abstract

We describe a procedure of determining the seismic-moment tensor from the measurements
of the far-field elastic waves (known in Seismology as P and S-waves). These elastic waves are
produced by a tensorial point-like force distribution with a short temporal duration (pulse-like
time dependence), which corresponds to a double couple representation of the seismic forces.
The inverse problem involves more unknowns than (algebraic) equations, and the Kostrov
representation is used for the seismic-moment tensor of a faulting source, together with the
energy conservation and a covariance condition, in order to reduce the number of unknowns
and to determine the system of equations. The explicit solution of this system of equations is
obtained and the components of the seismic-moment tensor are given in terms of the far-field
elastic waves. Also, the fault geometry and force mechanism are determined.
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Introduction. Recently, a tensorial point force distribution has been introduced,[1, 2] which
corresponds to the double-couple representation of the forces which may act in a localized seismic
focus.[3, 4] This force distribution is governed by the seismic-moment (symmetrical) tensor with
components Mij (i, j = 1, 2, 3). The static deformations of a homogeneous, isotropic half-space[1]
and the elastic waves generated by this force distribution[2] have been computed (the latter for a
pulse-like time dependence). We present here the solution of an inverse problem which determines
the tensorial components Mij from measurements of the elastic waves in the far-field region. The
problem is described by algebraic equations which relate the components Mij to the amplitudes
of the elastic waves. Apart from a more general interest in such inverse problems (e.g., in Applied
Mathematics,[5] Acoustics and Electromagnetism,[6, 7] Geophysics,[8] Seismology[9], etc), the
problem presented here exhibits a special interest because it raises certain difficulties related to
its definition (determination). Indeed, the equations relating the components Mij to the wave
displacement include seven unknowns (six components Mij and the (short) duration T of the
pulse), while the wave displacement provides only three parameters (input data): the magnitude vl
of the longitudinal-wave displacement vl and two components of the transverse-wave displacement
vt (we assume that the observation radius r from the force distribution to the local reference frame
is known).

The problem is solved by appealing to the Kostrov representation of a tensorial point force dis-
tribution in a fault (dyadic representation).[10, 11] This representation reduces the number of
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the unknowns from seven to four, but, among these four unknowns, it introduces a new one, the
(small) volume of the region occupied by the force distribution (focal volume). This volume is
related to the duration of the pulse by the equation of the energy conservation, derived in the
present paper. Finally, the fourth equation needed for solving the system of equations is obtained
from the covariance condition, which requires the equations to be invariant to rotations and trans-
lations. The problem is determined providing the equations are covariant, as expected. Apart
from the tensorial components Mij , other parameters of the force source are determined, like the
volume of the region occupied by the force distribution, the duration of the force, the released
energy and the geometry of the fault, i.e. the normal to the fault and the fault slip. These two
vectors determine the asymptotes of a hyperbola which characterizes the fault mechanism.

From the practical standpoint, the problem described above is currently solved by various seis-
mological agencies by fitting synthetic seismograms to data measured at various locations and
times.[12]-[25] This procedure requires a special care for the covariance of the fitting equations; in
addition, semi-empirical fitting parameters are introduced. The procedure presented here makes
use of the waves measured at one location only, without additional parameters, which allows a
direct implementation of the covariance condition. On the other hand, the numerical results pre-
sented here are determined up to a factor of the order of unity, which arises from the lack of
accurate knowledge of the model of localized fault.

Elastic waves. The inverse problem. The tensorial force distribution has the components[1, 2]

fi = Mijh(t)∂jδ(r) , (1)

where h(t) is an even, positive function, localized at the moment t = 0 and ∂j (j = 1, 2, 3)
denote the derivatives with respect to the components xj of the vector r (throughout this paper
we understand summation over repeating indices). We assume max[h(t)] = h(0) = 1 and denote
by T the (short) duration of the action of the force; the time T is much shorter than any time
of interest, such that we may view the function h(t) as being represented by Tδ(t), where δ(t) is
the Dirac delta function. Similarly, the force distribution given by equation (1) is localized over a
small volume V = l3, of dimension l, placed at the origin, as shown by the Dirac delta function δ(r)
(and its derivatives). We may use the representation g(r) for δ(r)/V , where max[g(r)] = g(0) = 1.

The force distribution given by equation (1) generates in the far-field region (r ≫ l) spherical-shell
elastic waves ul,t proportional to h

′

(t− r/cl,t), propagating with velocities cl (longitudinal wave)
and ct (transverse velocity). They are given by[2]

ul = −h
′
(t−r/cl)

4πρc3
l
r

M4n , ut =
h
′
(t−r/ct)

4πρc3
t
r

(M4n−m) , (2)

where ρ is the density of the body, n = r/r is the unit vector along the observation radius, m is
the vector with the components mi = Mijnj and M4 = Mijninj . We estimate the amplitudes of
the displacement produced by these waves as

vl = −
1

4πρTc3l r
M4n , vt =

1

4πρTc3t r
(M4n−m) . (3)

We assume that the parameters ρ, cl,t and r (i.e., r and n) are known. In Seismology the lon-
gitudinal displacement vl and the transverse displacement vt are known as corresponding to the
P - and S-waves, respectively.[3, 4] The inverse problem presented in this paper is to derive the
componenets Mij (of the seismic-moment tensor) from the displacements vl,t measured far away
from the origin of the force (on Earth’s surface). We can see from equations (3) that we have
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seven unknowns (six components Mij and the duration T of the action of the force) and only three
input (measured, known) parameters (three equations): the magnitude vl of the longitudinal dis-
placement and two components of the transverse displacement vt (we can check immediately from
equations (3) the transversality condition vl · vt = 0). We may view the equations

m = −4πρTr
(

c3l vl + c3tvt

)

, (4)

derived from equations (3), as three independent equations; multipling by ni and summing over
i, we get the first equation (3),

M4 = Mijninj = −4πρTrc3l (vln) = −4πρTrc3l vl , (5)

which is not independent of the three equations written above. We note from equations (4) and
(5) the relation m2 > M2

4 (v2t > 0).

Kostrov representation. The Kostrov representation (or dyadic representation)[10, 11] es-
tablishes the tensor M (with components Mij) for a fault which may be considered very small
(localized) in comparison with the distances of interest (i.e. far-field distances). Such a fault may
be viewed as the focal region (the focus) of typical tectonic seisms.[3, 4] We give here a simple
derivation of this representation. Let us consider a fault consisting of two parallel surfaces with a
small area S, of dimension l, separated by a small distance d, which may slide against each other.
Let us denote by s the normal to such a surface and by a the unit vector along the slip direction
(in the plane of the surfaces, s · a = 0). We estimate the torque tij = fidj of the force component
fi caused by the sliding of the two surfaces and the orthogonal distance component dj. Obviously,
the force component may be written as fi = 2µlu0ai, where µ is the (shear) Lame coefficient and
u0 is the magnitude of the displacement at the point where the force acts (say, the centre of the
surface S); the factor 2 arises from the relative displacement of the two surfaces. Similarly, we
may write dj = dsj, such that we get the torque tij = 2µlu0daisj. We may replace the product
lu0d by the small volume V of the region occupied by the fault, such that we get tij = 2µV aisj .
We can see that the product u0d is equated by this representation to the fault area S = l2. The
symmetrized torque tij is generalized to the components Mij of the seismic-moment tensor (double
couple representation), i.e. we write

Mij = 2µV (siaj + aisj) . (6)

This is the Kostrov representation (dyadic representation) of the seismic-moment tensor (if we
set u0 = d = l, equation (6) gives also a representation for the focal strain Mij/4µV ). We note
that the tensor given by equation (6) is traceless, Mii = 0 (siai = 0). We can see easily that this
representation involves four unknown parameters: for instance, two for the unit vector s, one for
the orthogonal unit vector a and the magnitude-related parameter 2µV (actually the volume V ,
since µ is a known parameter). Although the seven unknowns in equations (3) are reduced to
four by equation (6), in order to make use of this representation in the problem formulated by
equations (3) we need a relation between the duration T and the fault volume V . This relation is
provided by the energy conservation.

Before passing to the energy conservation we note that the representation given by equation (6)
has two symmetry operations. First, equation (6) is invariant under the simultaneous changes
s −→ −s and a −→ −a, which merely indicates a reflection of the orientation of the fault
surfaces (or an interchange of the two oriented surfaces); second, equation (6) is invariant under
the operation s ←→ a, which indicates that we cannot distinguish between the fault orientation
and the sliding direction. Indeed, matter conservation in the sliding process requires in fact that
another fault, orthogonal to the former, is present.
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Energy conservation. The equation of the elastic waves with force density given by equation
(1) can be written as

üi − c2t∆ui − (c2l − c2t )∂idiv u =
1

ρ
Mij(t)∂jδ(r) , (7)

where ui are the components of the displacement vector u and the time dependence is incorporated
in Mij(t). If we multiply equation (7) by u̇i and sum over the suffix i, we get the law of energy
conservation

∂
∂t

[

1
2
ρu̇2

i +
1
2
ρc2t (∂jui)

2 + 1
2
ρ(c2l − c2t )(∂iui)

2
]

−ρc2t ∂j(u̇i∂jui)− ρ(c2l − c2t )∂j(u̇j∂iui) = u̇iMij(t)∂jδ(r) .
(8)

According to this equation, a mechanical work u̇iMij(t)∂jδ(r) per unit volume and unit time is
done by the external force at the origin (in the focal region). The corresponding energy is taken
by the elastic waves (the square bracket in equation (8)) and carried through the space (the term
including the div in equation (8)).

In the far-field region the displacement u in equation (8) can be decomposed in longitudinal
and transverse waves, i.e. we can write u = ul + ut, where curlul = 0 and div ut = 0; this
decomposition leads to

∂el,t
∂t

+ cl,tdiv sl,t = 0 , (9)

where

el,t =
1

2
ρ
(

u̇f
l,ti

)2

+
1

2
ρc2l,t

(

∂iu
f
l,tj

)2

(10)

‘ is the energy density and
sl,ti = −ρcl,tu̇f

l,tj∂iu
f
l,tj ; (11)

cl,tsl,ti are energy flux densities per unit time (energy flow). From equation (9) we can see that the
energy is transported with velocities cl,t (as it is well known). The volume energy E =

∫

dr(el+et)
is equal to the total energy flux

Φ = −
∫

dtdr (cldiv sl + ctdiv st) = −
∫

dt

∮

df (clsl + ctst) , (12)

where df denotes the element of the volume-enclosing surface. Making use of equations (11) and
the waves given by equations (2) for Mij(t) = Mijh(t), we estimate the surface integral in equation
(12) as

E = Φ =
4πρ

T
r2

(

clv
2
l + ctv

2
t

)

; (13)

this relation gives the energy released by the tensorial force distribution acting a short duration
T in terms of the displacement magnitudes vl,t measured in the far-field region; it is equal to the
mechanical work W . Making use of equations (3) we get an additional relation

E =
1

4πρc5tT
3

[

m2 −
(

1− c5t/c
5
l

)

M2
4

]

(14)

between energy and the seismic moment. We note that the lack of an accurate knowledge of the
function h(t) affects this result by a numerical factor, which, for a very short duration T , is of the
order unity.

From equation (8) the mechanical work in the focal region is given by

W =

∫

dt

∫

dru̇0
i (t)Mij(t)∂jδ(r) , (15)
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where u̇0
i (t) is the time derivative of the i-th component of the focal displacement u0

i (t) = u0
ih(t),

−T/2 < t < 0; for Mij(t) = Mijh(t), equation (15) becomes

W =
1

2

∫

dru0
iMij∂jδ(r) . (16)

For a fault, we use the localized function g(r) for the spatial distribution and assume u0 = d; we
get immediately W ≃ 1

2
Mijaisj. Making use of equation (6), we get W = µV . We can see that

the mechanical work done in the focal region is of the order of the elastic energy stored in that
region, as expected. It is worth noting that (small) deviations from the equality u0 = d affect
this result by a numerical factor (likely, slightly larger than unity), which remains undetermined.
We adopt here the value unity for the ratio of this numerical factor and the (unknown) numerical
factor in equation (13), such that, by equating W with energy E (and Φ) given by equation (13),
we get

V =
4πr2

c2tT

(

clv
2
l + ctv

2
t

)

(17)

(c2t = µ/ρ). This equation provides the relation between the volume V occupied by the force
distribution and its duration of action T . The product V T is affected by the uncertainty in the
numerical factors discussed above.

Covariance condition. Source parameters. Let us write the Kostrov representation (equation
(6)) as

Mij = M(siaj + aisj) , M = 2µV (18)

and introduce the notations α = n · a, β = n · s and p = m/M ; we get

αs+ βa = p . (19)

If the vector n has a component perpendicular to the plane made by the vectors s and a, a
similar equation for this vector would not be covariant (the out-of plane component would be an
undetermined parameter). Therefore, we assume that the vector n is in the plane made by the
two vectors s and a and write

βs+ αa = n ; (20)

we call this equation the covariance condition. We get immediately

α2 + β2 = 1 , 2αβ = p4 , (21)

where p4 = M4/M and
m2 = M2 (22)

(p2 = 1). Making use of equations (4), (17) and (22) we get the duration

T =
√
2r

(clv
2
l + ctv

2
t )

1/2

(c6l v
2
l + c6t v

2
t )

1/4
, (23)

the volume

V =
π(2r)3/2

c2t

(

clv
2
l + ctv

2
t

)1/2 (
c6l v

2
l + c6t v

2
t

)1/4
(24)

and the parameter

M = 2µV = 2πρ(2r)3/2
(

clv
2
l + ctv

2
t

)1/2 (
c6l v

2
l + c6tv

2
t

)1/4
(25)
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in terms of measurable quantities (displacements vl,t).

The quantity (Mij
2)

1/2
=
√
2M (equation (18)) is called the magnitude of the tensor Mij ; we

call the parameter M the reduced magnitude of the tensor Mij . From E = W = µV (equation
(16)) we have E = M/2. It follows that equation (25) allows the estimation of the magnitude
of the seismic-moment tensor and the released energy E. These estimates can be used in the

Gutenberg-Richter relation lg (Mij
2)

1/2
= 1.5Mw + 16.1 which defines the (moment) magnitude

Mw of the seism.[3, 4]

Derivation of the seismic-moment tensor. The solutions of the system of equations (21) are

α =

√

1 +
√

1− p24
2

, β = sgn(p4)

√

1−
√

1− p24
2

(26)

and α←→ ±β, α, β ←→ −α, −β. Making use of equations (4), (23) and (24), the parameters pi
and p4 are given by

pi = −
c3l vli + c3t vti

(c6l v
2
l + c6tv

2
t )

1/2
, p4 = −

c3l vl

(c6l v
2
l + c6tv

2
t )

1/2
. (27)

Finally, we get the vectors
s = α

α2
−β2p− β

α2
−β2n ,

a = − β
α2

−β2p+ α
α2

−β2n ;

(28)

these solutions are symmetric under the operations s ←→ a (α ←→ −β) and s ←→ −a (α ←→
β, or α, β ←→ −α, −β), as discussed before. The seismic moment given by equation (18) is
determined up to these symmetry operations.

The eigenvalues of the seismic moment given by equation (18) are ±M (we leave aside the eigen-
value zero); the corresponding eigenvectors w are given by a·w = ±s·w, which imply p·w = ±n·w;
the vectors w are directed along the bisectrices of the angles made by s and a, or p and n

(w ∼ s ± a). The associated quadratic form Mijxixj = const is a rectangular hyperbola in the
reference frame defined by the vectors s and a; by using the coordinates u = s · x and v = a · x
in equation (18), the equation of this hyperbola is uv = const/2M. Actually, in the local frame
(coordinates xi), the quadratic form Mijxixj = const is a degenerate hyperboloid, consisting of a
family of parallel hyperbolas displaced along the third axis (perpendicular to the u- and v-axes).
Making use of equations (28), this quadratic form can also be written as

2ξη − p4
(

ξ2 + η2
)

= const , (29)

where the coordinates ξ = pixi and η = nixi are directed along the vectors p and n, respectively.

The asymptotes of this hyperbola are ξ = p4η/
(

1 +
√

1− p24

)

and η = p4ξ/
(

1 +
√

1− p24

)

(corresponding to the asymptotes u = (αξ−βη)/(α2−β2) = 0 and v = (−βξ+αη)/(α2−β2) = 0).
Equations (26)-(28) define the fault geometry and force mechanism, as derived from the far-field
elastic waves.

Finally, by making use of equations (28) in equation (18) we get the solution for the seismic
moment

Mij =
M

1− p24
[pinj + pjni − p4 (pipj + ninj)] , (30)

where M is given by equation (25) and pi, p4 are given by equations (27). In equation (30)
there are only three independent components of the seismic tensor, according to the equations
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Mijnj/M = pi: the vectors n and p are known (equation (27)) from experimental data, such that
these equations can be viewed as three conditions imposed upon the six components Mij . Also,
we can see that there exist only three independent components of the seismic tensor Mij from
the conditions Mii = 0, Mijsjsi = 0 (or Mijaiaj = 0) and p2i = 1. The later equality arises from
the covariance condition, which, together with the energy conservation, determines the duration
T , the (small) volume V occupied by the force distribution and the reduced magnitude M of the
seismic moment.

Discussion and conclusion. An isotropic tensor Mij = −Mδij is an interesting particular case,
since it can be associated with a force distribution caused by explosions. In this case the transverse
displacement is vanishing (vt = 0), m = −Mn and M4 = −M . From equations (4) and (13) we
get

m = −4πρTrc3l vl , E =
4πρr2

T
clv

2
l . (31)

we can see that vln > 0 corresponds to M > 0 (explosion), while the case vln < 0 corresponds to
an implosion. The region occupied by the force distribution is a sphere with radius of the order
l, and the vectors s and a are equal (s = a) and depend on the point on the focal sphere; the
magnitude of the focal displacement is u0 = l. The considerations made before for the geometry
of the focal region (Kostrov representation) lead to

Mij = −2V (2µ+ λ)δij = −2ρc2l V δij , (32)

where the focal volume is written as V = Sl, S being the area of the spherical surface. Similarly,
the energy is E = W = 1

2
M (M > 0), such that, making use of equations (31), we get clT =

√
2rvl,

M = 2πρc2l (2rvl)
3/2 = 2ρc2l V , (33)

and the focal volume V = π(2rvl)
3/2. These equations determine the magnitude M and the

volume of the focal region from the displacement vl measured at (large) distance r. We note that
a superposition of shear faulting and isotropic focal mechanisms cannot be resolved, because the
longitudinal displacement vl includes indiscriminately contributions from both mechanisms.

In conclusion, an inverse problem is solved here for the elastic wave propagation in a homoge-
neous, isotropic body, which consists in determining the tensor of the force distribution from the
measurements of the far-field elastic waves. The source of the waves is a tensorial point-like force
distribution with a short duration (pulse-like time dependence), which corresponds to a double
couple representation of the seismic forces. The static deformation produced by such a force distri-
bution in a homogeneous, isotropic half-space have been computed previously.[1] The elastic waves
produced by this pulse-lke force distribution in a homogeneous, isotropic body are spherical-shell
waves,[2] which are known in Seismology as the P - and S-waves. The inverse problem involves
three (algebraic) equations (the displacement amplitudes of the longitudinal and transverse elastic
waves) and seven unknowns, which include six components of the force tensor and the duration of
the temporal pulse. For a fault-like region occupied by the force distributution (focal region) the
Kostrov representation holds, which reduces the number of unknowns to four, but, unfortunately,
introduces the volume of the focal region as a new unknown. From the energy conservation we
derive in this paper an equation which relates this volume to the duration of the pulse, such that
we are left with three equations and four unknowns. The fourth equation needed for determining
the system of equations is obtained from the covariance condition, which eliminates undetermined
quantities. The determined system of equations is solved explicitly, and the components of the
force tensor are given in terms of the far-field waves. In addition, other parameters of the wave
source are determined, like the duration of the pulse, the focal volume, the released energy, the
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orientation of the fault and the slip in the fault, all in terms of the far-field waves. From the fault
geometry and the force tensor, we derive a hyperbola which characterize the force source, in the
sense that its asymptotes are directed along the normal to the fault and the fault slip. Also, the
particular case of an isotropic source, which may correspond to explosions, is presented.
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