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Abstract

The elastic waves are derived in a uniaxially anisotropic model, which may be relevant
for quasi-one-dimensional solids.

1 Elastic energy

A quasi-one-dimensional solid may be modelled as a uniaxially anisotropic continuum,i .e . an
elastic body which is homogeneous in the x, y-plane and has an anisotropy axis along the z-
direction. We shall use indistinctly the coordinate labels x, y, z and , respectively, 1, 2, 3 . In order
to establish the elastic energy we start with the infinitesimal length given by

dl2 = dx2

i + dx2

3 (1)

where i = 1, 2 , which becomes

d
∼

l
2

= [(1 + ∂u1/∂x1) dx1 + ∂u1/∂x2 · dx2 + ∂u1/∂x3 · dx3]
2 +

+ [∂u2/∂x1 · dx1 + (1 + ∂u2/∂x2) dx2 + ∂u2/∂x3 · dx3]
2 +

+ [∂u3/∂x1 · dx1 + ∂u2/∂x2 · dx2 + (1 + ∂u3/∂x3) dx3]
2

(2)

under the deformation field xi →
∼
xi= xi + ui , i = 1, 2, 3 . To the leading order in ui (2) can be

written as

d
∼

l
2

= dl2 + 2uijdxidxj + 2ui3dxidx3 + 2u33dx2

3 , (3)

where the deformation tensor

uij =
1

2

(

∂ui

∂xj

+
∂uj

∂xi

)

, i, j = 1, 2 , (4)

the deformation vector

ui3 =
1

2

(

∂ui

∂x3

+
∂u3

∂xi

)

i = 1, 2 , (5)

and the deformation scalar u33 = ∂u3/∂x3 with respect to the rotations about the anisotropy axis
have been introduced. According to the general principles of the elasticity theory[1] the density
of the elastic energy includes the five quadratic invariants which can be constructed with the
deformations given above, i.e. it may be written as

Eel = λu2

ii + µu2

ij + τu2

i3 + σu2

33 + νu33uii , (6)
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where the Greek letters stand for the coupling (elastic) constants.

It is useful at this point to recall that, generally, we have 81 coupling constants Cij,kl, which,
however, are symmetric under the interchange of the ij and kl labels, and under the interchange
of the ij and kl pairs of labels. The first two symmetries reduce the number of the coupling
constants to 36, while the third symmetry effects a further reduction to 21. For these remaining
elastic constants one employs usually the Voigt notation[2] 1 → xx, 2 → yy, 3 → zz, 4 →
yz(zy), 5 → zx(xz), 6 → xy(yx). The Cauchy relations C12 = C66, C13 = C55, C23 = C44, C45 =
C36, C56 = C14, C46 = C25 further restrict the number of coupling constants, while the structure
symmetry entails its own reduction.

It is known that the hexagonal symmetry has also five elastic constants. In fact, the elastic
energy given by (6) looks very similar with that of the hexagonal symmetry. Indeed, (6) can be
written as

Eel = (λ +
µ

2
)u2

ii +
µ

2

[

(u11 − u22)
2 + 4u2

12

]

+ τu2

i3 + σu2

33 + νu33uii , (7)

which is exactly the elastic energy of the hexagonal symmetry, though the coordinates x, y →
ξ, ζ = x ± y, and the corresponding elastic field, are different.[3]

Using the notation

T = uii (8)

for the trace of the deformation tensor we may write

u2

ij =
(

uij −
1

2
Tδij

)2

+
1

2
T 2 =

1

2
(u11 − u22)

2 + 2u2

12 +
1

2
T 2 (9)

and

Eel = µ
(

uij −
1

2
Tδij

)2

+

(

λ +
µ

2
− ν2

4σ

)

T 2 + τu2

i3 + σ
(

u33 +
ν

2σ
T
)2

, (10)

whence one can see the stability conditions

µ, τ, σ > 0, ν2 < 2σ (2λ + µ) . (11)

The elastic processes described by (10) can also be classified as follows. For u11 = u22 = ui3 =
u33 = 0 we have the shear modes of the basal (xy−) plane with the elastic energy density 2µu2

12;
for uij = u33 = 0 we have the axial shear modes of energy τu2

i3; for u12 = ui3 = u33 = 0 and
u11 = u22 we get the compression modes of the basal plane with the energy density 2 (2λ + µ) u2

11;
the axial compression modes are easily obtained from uij = ui3 = 0, with the energy density σu2

33;
and finally, we have a special mode, which can be called a ”pinch” mode, defined by u12 = ui3 =
0, u11 = u22, u33+

ν
2σ

T = u33+
ν
σ
u11 = 0 , of energy density

(

λ + µ
2
− ν2

4σ

)

T 2 = 2 (2λ + µ)u2
11−σu2

33

.

2 Elastic waves

The kinetic energy is given by

Ekin =
1

2
ρ
∫

dV
(

·
u

2

1 +
·
u

2

2 +
·
u

2

3

)

, (12)
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where ρ is the mass density and V is the volume of the sample, while the elastic energy is obtained
from (6) as

Eel =
∫

dV
[

(λ + µ)
(

∂u1

∂x1

)2

+ 1

2
µ
(

∂u1

∂x2

)2

+ 1

4
τ
(

∂u1

∂x3

)2
]

+

+
∫

dV
[

1

2
µ
(

∂u2

∂x1

)2

+ (λ + µ)
(

∂u2

∂x2

)2

+ 1

4
τ
(

∂u2

∂x3

)2
]

+

+
∫

dV
(

2λ∂u1

∂x1
· ∂u2

∂x2
+ µ∂u1

∂x2
· ∂u2

∂x1

)

+
∫

dV
{

τ
4

[

(

∂u3

∂x1

)2

+
(

∂u3

∂x2

)2
]

+ σ
(

∂u3

∂x3

)2
}

+

+
∫

dV
[

τ
2

(

∂u1

∂x3
· ∂u3

∂x1
+ ∂u2

∂x3
· ∂u3

∂x2

)]

+ ν ∂u3

∂x3

(

∂u1

∂x1
+ ∂u2

∂x2

)

.

(13)

Introducing the Fourier transform

ui (x) =
1√
V

∑

q

uiqe
iqx , (14)

with u†
iq = ui−q , i = 1, 2, 3, the kinetic energy becomes

Ekin =
1

2
ρ
∑

q

(

·
u
†

1q

·
u1q +

·
u
†

2q

·
u2q +

·
u
†

3q

·
u3q

)

(15)

and the elastic energy

Eel =
∑

q

[

(λ + µ) q2
1 + 1

2
µq2

2 + 1

4
τq2

3

]

u†
1qu1q+

+
[

1

2
µq2

1 + (λ + µ) q2
2 + 1

4
τq2

3

]

u†
2qu2q+

+ (2λ + µ) q1q2u
†
1qu2q +

[

1

4
τ (q2

1 + q2
2) + σq2

3

]

u†
3qu3q+

+
(

1

2
τ + ν

)

q1q3u
†
3qu1q +

(

1

2
τ + ν

)

q2q3u
†
3qu2q .

(16)

The orthogonal transform

u1q = cos θq · v1q + sin θq·
∼
v2q ,

u2q = − sin θq · v1q + cos θq·
∼
v2q ,

(17)

with
sin θq = q1√

q2
1+q2

2

, cos θq = q2√
q2
1+q2

2
(18)

decouples the motions in the basal plane and leads to

Ekin =
1

2
ρ
∑

q





·
v
†

1q

·
v1q +

·
∼
v
†

2q

·
∼
v2q +

·
u
†

3q

·
u3q



 (19)

and
Eel =

∑

q

[

1

2
µ (q2

1 + q2
2) + 1

4
τq2

3

]

v†
1qv1q+

+
[

(λ + µ) (q2
1 + q2

2) + 1

4
τq2

3

]

∼
v
†

2q

∼
v2q +

+
[

1

4
τ (q2

1 + q2
2) + σq2

3

]

u†
3qu3q+

+
(

1

2
τ + ν

)

| q3 |
√

q2
1 + q2

2u
†
3q

∼
v2q .

(20)

We remark that the transform given by (17) and (18) amounts to a rotation of the polarizations

around the anisotropy axis of angle θq , such that
∼
v2q is oriented along the transverse wavevector

q⊥ = (q1, q2) and v1q is perpendicular to it.
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The hamiltonian given by (19) and (20) is brought to a sum of harmonic oscillators

H =
1

2
ρ
∑

iq

[

·
v
†

iq

·
viq +ω2

i (q) · v†
iqviq

]

(21)

i = 1, 2, 3, with the frequencies given by

ω2

1 (q) =
1

2ρ

(

2µq2

⊥ + τq2

3

)

, (22)

and
ω2

2,3 (q) = 1

4ρ
([4 (λ + µ) + τ ] q2

⊥ + (τ + 4σ) q2
3±

±
[

[[4 (λ + µ) − τ ] q2
⊥ + (τ − 4σ) q2

3]
2
+ 4 (τ + 2ν)2 q2

3q
2
⊥

] 1
2 )

(23)

by a second orthogonal transform

u3q = cos ϕq · v3q + sin ϕq · v2q ,
∼
v2q= − sin ϕq · v3q + cos ϕq · v2q ,

(24)

where

tan 2ϕq =
2 (τ + 2ν) | q3 | q⊥

[4 (λ + µ) − τ ] q2
⊥ + (τ − 4σ) q2

3

. (25)

Introducing the well-known creation and annihilation operators for phonons by

viq =
√

h̄
2ρωi

(

a†
iq + ai−q

)

,
·
viq= i

√

h̄ωi

2ρ

(

a†
iq − ai−q

)

,
(26)

the hamiltonian (21) acquires the usual diagonal form

H =
∑

iq

h̄ωi (q)
(

a†
iqaiq + 1/2

)

. (27)

3 Discussion

First, we remark that only v1q is a purely transverse mode (i .e., perpendicular to q ), v2q and v3q

have both transverse and longitudinal components, to an extent prescribed by the angle ϕq .For
any q there is a (local) trihedral frame 1, 2, 3, given by

uq = u1i + u2j + u3k =
= (cos θ · i− sin θ · j) v1 + (sin θ · cos ϕ · i+cos θ · sin ϕ · j+sin ϕ · k) v2+

+ (− sin θ · sin ϕ · i− cos θ · sin ϕ · j+ cos ϕ · k) v3 =
= v11 + v22 + v33

(28)

which have the axes directed along the polarizations (polarization trihedron), the propagation
vector q being in the 2, 3-plane.

Secondly, we remark that if one assumes that the axial shear and the pinch modes are absent
(τ = ν = 0) then ϕq = 0 and we are left with the following three types of elastic waves:

ω2

1 (q) = (µ/ρ) q2

⊥ (29)

with the polarization v1q perpendicular to q⊥ and the anisotropy axis (chain axis in a quasi-one-
dimensional solid);

ω2

2 (q) = [2 (λ + µ) /ρ] q2

⊥ (30)
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with the polarization v2q parallel to q⊥ (perpendicular to the chain axis); and

ω2

3 (q) = (2σ/ρ) q2

3 (31)

with the polarization v3q = u3q parallel to the chain axis. This later mode couples to the electrons
restricted to move only along the chains.

It seems that a resembling discussion can be found elsewhere.[4]
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