Journal of Theoretical Physics

Replacing sums by integrals

M. Apostol

Department of Theoretical Physics, Institute of Atomic Physics, Magurele-Bucharest MG-6, POBox MG-35, Romania
email: apoma@theor1.ifa.ro

Abstract

A few examples are given of replacing sums by integrals.

With $x_{0}=a, x_{N}=b, x_{n}=a+n$ and $a+N=b$ we may write

$$
\begin{align*}
\int_{a-1 / 2}^{b+1 / 2} d x \cdot f(x) & =\sum_{n=0}^{N} \int_{x_{x}-1 / 2}^{x_{n}+1 / 2} d x \cdot f(x)= \tag{1}\\
& =\sum_{n=0}^{N} \sum_{k=0}^{\infty} \frac{1}{2^{2 k}} \frac{1}{(2 k+1)!} f^{(2 k)}\left(x_{n}\right)
\end{align*}
$$

where $f^{(2 k)}$ are the $2 k$-th derivative of f, with $f^{(0)}=f$. Similarly, we have

$$
\begin{equation*}
\int_{a-1 / 2}^{b+1 / 2} d x \cdot f^{(2 m)}(x)=\sum_{k=0}^{\infty} \frac{1}{2^{2 k}} \frac{1}{(2 k+1)!} \sum_{n=0}^{N} f^{(2 k+2 m)}\left(x_{n}\right) \tag{2}
\end{equation*}
$$

and denoting

$$
\begin{equation*}
A_{m}=\int_{a-1 / 2}^{b+1 / 2} d x \cdot f^{(2 m)}(x) \quad, \quad X_{m}=\sum_{n=0}^{N} f^{(2 m)}\left(x_{n}\right) \quad, \quad C_{k}=\frac{1}{2^{2 k}} \frac{1}{(2 k+1)!} \tag{3}
\end{equation*}
$$

(2) can be transcribed as

$$
\begin{equation*}
A_{m}=\sum_{k=0}^{\infty} C_{k} X_{m+k} \tag{4}
\end{equation*}
$$

By iterating (4) we obtain

$$
\begin{equation*}
X_{m}=A_{m}-\sum_{k=1}^{\infty} C_{k} A_{m+k}+\sum_{k, l=1}^{\infty} C_{k} C_{l} A_{m+k+l}-\sum_{k, l, p=1}^{\infty} C_{k} C_{l} C_{p} A_{m+k+l+p}+\ldots \tag{5}
\end{equation*}
$$

whence

$$
\begin{equation*}
X_{0}=A_{0}-\sum_{k=1}^{\infty} C_{k} A_{k}+\sum_{k=2}^{\infty}\left(\sum_{l=1}^{k-1} C_{k} C_{k-l}\right) A_{l}-\sum_{k=3}^{\infty}\left(\sum_{l, p=1}^{l+p \leq k-1} C_{l} C_{p} C_{k-l-p}\right) A_{k}+\ldots \tag{6}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
X_{0}=A_{0}-C_{1} A_{1}+\left(C_{1}^{2}-C_{2}\right) A_{2}\left(C_{1}^{3}-2 C_{1} C_{2}+C_{3}\right) A_{3}+\ldots \tag{7}
\end{equation*}
$$

It follows from (7)

$$
\begin{equation*}
\sum_{a}^{b} f\left(x_{n}\right)=\int_{a-1 / 2}^{b+1 / 2} d x \cdot f(x)-\left.\frac{1}{24} f^{\prime}\right|_{a-1 / 2} ^{b+1 / 2}+\left.\frac{7}{24.240} f^{\prime \prime \prime}\right|_{a-1 / 2} ^{b+1 / 2}-\ldots \tag{8}
\end{equation*}
$$

The series in (8) is a fast convergent one providing the function f is a smooth function.
Let us apply (8) to

$$
\begin{equation*}
S_{1}=\sum_{n=1}^{N} \frac{1}{n^{2}} \tag{9}
\end{equation*}
$$

for large N. Since $1 / n^{2}$ is rather abrupt between 1 and 2 we separate the term $n=1$ and get

$$
\begin{equation*}
S_{1}=1+\frac{1}{3 / 2}+O(1 / N) \approx 1.66 \tag{10}
\end{equation*}
$$

which compares well with $\pi^{2} / 6$, the well-known value of S_{1} for $N \rightarrow \infty$. Let us compute by the same method

$$
\begin{equation*}
f_{1}(z)=\sum_{k} \frac{1}{k^{2}+z} \tag{11}
\end{equation*}
$$

where $k=n / N, n=1,2, \ldots N$ and $z>0$. We get easily

$$
\begin{equation*}
f_{1}(z)=\frac{N}{\sqrt{z}} \arctan \frac{1}{\sqrt{z}}+O(1 / N) \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{1}(z)=\sum_{k}^{\infty} \frac{1}{k^{2}+z}=\frac{\pi N}{2 \sqrt{z}} \tag{13}
\end{equation*}
$$

in both cases the singular behaviour of S_{1} being reflected in the singular behaviour at $z=0$.
By the same procedure we can compute

$$
\begin{equation*}
S_{2}=\sum_{n_{1}, n_{2}=1}^{N} \frac{1}{n_{1}^{2}+n_{2}^{2}} . \tag{14}
\end{equation*}
$$

Denoting $n_{2}^{2}=z$ and following the computations above we get straightforwardly

$$
\begin{equation*}
S_{2}=c \sum_{n=1}^{N} \frac{1}{n} \tag{15}
\end{equation*}
$$

as the leading term $\left(\sum_{n=1}^{N}(1 / n) \approx \ln N+\right.$ Euler's constant $\left.C \approx 0.577\right)$ where c is somewhere between $\arctan 1$ and $\arctan 2$. We may ask of summations in (14) up to distinct upper limits $N_{1,2}$, and ambiguities will appear in the order of taking the limits. By applying (8) successively we obtain also

$$
\begin{equation*}
f_{2}(z)=\sum_{\mathbf{k}} \frac{1}{k^{2}+z}=N^{2} c \ln \left(\frac{1+\sqrt{1+z}}{\sqrt{z}}\right) \tag{16}
\end{equation*}
$$

where $\mathbf{k}=\left(n_{1} / N, n_{2} / N\right), n_{1,2}=1,2, \ldots N$ in the limit of large N and for $z>0, c$ being somewhere between $\pi / 4$ and $\pi / 2$. Integrating directly over \mathbf{k} we get

$$
\begin{equation*}
f_{2}(z)=\frac{\pi}{4} N^{2} \ln \left(\frac{1+z}{z}\right) \tag{17}
\end{equation*}
$$

which is a pretty good approximation.
Similarly,

$$
\begin{equation*}
S_{3}=\sum_{n_{1}, n_{2}, n_{3}=1}^{N} \frac{1}{n_{1}^{2}+n_{2}^{2}+n_{3}^{2}} \tag{18}
\end{equation*}
$$

is

$$
\begin{equation*}
S_{3} \approx 1.77 \cdot c \cdot N \tag{19}
\end{equation*}
$$

where $c \in(\arctan 2 \sqrt{2}, \arctan 1 / \sqrt{2})$. Replacing the sum in (18) by a three-dimensional integral we get $(\pi / 2)(6 / \pi)^{1 / 3} N$, which is a very good approximation to (19). A similar treatment supports $f_{3}(z)=\sum_{\mathbf{k}} 1 /\left(k^{2}+z\right)$, for $z .0$, where $\mathbf{k}=\left(n_{1} / N, n_{2} / N, n_{3} / N\right),, n_{1,2,3}=1,2, \ldots N$, or n_{i} are let to go to infinity, for any $i=1,2,3$, as for $f_{1,2}$ as well.
(c) J. Theor. Phys. 1998, apoma@theor1.theory.nipne.ro

