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Abstract

A few examples are given of replacing sums by integrals.

With x0 = a, xN = b, xn = a + n and a + N = b we may write

∫ b+1/2

a−1/2
dx · f(x) =

N∑
n=0

∫ xn+1/2

xx−1/2
dx · f(x) =

(1)

=
N∑

n=0

∞∑
k=0

1

22k

1

(2k + 1)!
f (2k)(xn) ,

where f (2k) are the 2k-th derivative of f , with f (0) = f . Similarly, we have

∫ b+1/2

a−1/2
dx · f (2m)(x) =

∞∑
k=0

1

22k

1

(2k + 1)!

N∑
n=0

f (2k+2m)(xn) , (2)

and denoting

Am =
∫ b+1/2

a−1/2
dx · f (2m)(x) , Xm =

N∑
n=0

f (2m)(xn) , Ck =
1

22k

1

(2k + 1)!
, (3)

(2) can be transcribed as

Am =
∞∑

k=0

CkXm+k . (4)

By iterating (4) we obtain

Xm = Am −
∞∑

k=1

CkAm+k +
∞∑

k,l=1

CkClAm+k+l −
∞∑

k,l,p=1

CkClCpAm+k+l+p + ... , (5)

whence

X0 = A0 −
∞∑

k=1

CkAk +
∞∑

k=2

(
k−1∑
l=1

CkCk−l

)
Al −

∞∑
k=3

l+p≤k−1∑
l,p=1

ClCpCk−l−p

Ak + ... , (6)
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i.e.
X0 = A0 − C1A1 +

(
C2

1 − C2

)
A2

(
C3

1 − 2C1C2 + C3

)
A3 + ... . (7)

It follows from (7)

b∑
a

f(xn) =
∫ b+1/2

a−1/2
dx · f(x)− 1

24
f ′ |b+1/2

a−1/2 +
7

24.240
f ′′′ |b+1/2

a−1/2 −... . (8)

The series in (8) is a fast convergent one providing the function f is a smooth function.

Let us apply (8) to

S1 =
N∑

n=1

1

n2
(9)

for large N . Since 1/n2 is rather abrupt between 1 and 2 we separate the term n = 1 and get

S1 = 1 +
1

3/2
+ O(1/N) ≈ 1.66 (10)

which compares well with π2/6, the well-known value of S1 for N → ∞. Let us compute by the
same method

f1(z) =
∑
k

1

k2 + z
, (11)

where k = n/N, n = 1, 2, ...N and z > 0. We get easily

f1(z) =
N√
z

arctan
1√
z

+ O(1/N) (12)

and

F1(z) =
∞∑
k

1

k2 + z
=

πN

2
√

z
, (13)

in both cases the singular behaviour of S1 being reflected in the singular behaviour at z = 0.

By the same procedure we can compute

S2 =
N∑

n1,n2=1

1

n2
1 + n2

2

. (14)

Denoting n2
2 = z and following the computations above we get straightforwardly

S2 = c
N∑

n=1

1

n
(15)

as the leading term (
∑N

n=1(1/n) ≈ ln N+Euler’s constant C ≈ 0.577) where c is somewhere
between arctan 1 and arctan 2. We may ask of summations in (14) up to distinct upper limits
N1,2, and ambiguities will appear in the order of taking the limits. By applying (8) successively
we obtain also

f2(z) =
∑
k

1

k2 + z
= N2c ln

(
1 +

√
1 + z√
z

)
, (16)

where k = (n1/N, n2/N), n1,2 = 1, 2, ...N in the limit of large N and for z > 0, c being somewhere
between π/4 and π/2. Integrating directly over k we get

f2(z) =
π

4
N2 ln

(
1 + z

z

)
, (17)
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which is a pretty good approximation.

Similarly,

S3 =
N∑

n1,n2,n3=1

1

n2
1 + n2

2 + n2
3

(18)

is
S3 ≈ 1.77 · c ·N , (19)

where c ∈
(
arctan 2

√
2, arctan 1/

√
2
)
. Replacing the sum in (18) by a three-dimensional integral

we get (π/2) (6/π)1/3 N , which is a very good approximation to (19). A similar treatment supports
f3(z) =

∑
k 1/ (k2 + z), for z.0, where k = (n1/N, n2/N, n3/N), , n1,2,3 = 1, 2, ...N , or ni are let to

go to infinity, for any i = 1, 2, 3, as for f1,2 as well.
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