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Abstract

A new mean-field approach to the Ising model is presented, with the aim of attaining an
insight into the nature of the ferromagnetic phase transition.

The Ising model was shown to exhibit no transition in one dimension,[1] while it has ferromag-
netically ordered phases in two and three dimensions, below a critical temperature. The model
has been solved exactly in two dimensions[2], after the critical temperature had previously been
located.[3] An exact solution is still lacking in three dimensions, though a great deal of results are
known.[4] Approximate solutions, of mean-field type, have early been advanced,[5] which helped to
gain insight into the mechanism of the phase transition. A new mean-field approach is presented
in this paper, in an attempt to clarify the nature of the phase transition in the Ising model. This
approach might be considered perhaps as being inspired by the classical work of Peierls.[6]

The energy of an Ising ferromagnet is given by

E = −1

2
J

∑
〈ij〉

µiµj , (1)

where J is a coupling strength (exchange integral), µi = ±1, i = 1, 2, ...N , are the spin variables,
and N is the number of spins arranged in a d-dimensional lattice, d = 1, 2, 3; the summation is
extended over the nearest neighbours, such as each spin bond is given the energy −J for parallel
spins, and +J for antiparallel spins.

Several approximations will be made herein on the Ising ferromagnet; first, the lattice is replaced
by a continuous, uniform distribution of spins, such as each of them interacts with its nearest-
neighbours, placed along d orthogonal, local directions. We shall specialize for a while to a
two-dimensional lattice, whose ground-state energy is

E = −2JN , (2)

corresponding to all the N spins aligned. We draw randomly n spins out of N , and reverse them;
there are

Cn
N =

N !

n! (N − n)!
(3)



2 J. Theor. Phys.

choices, and we are interested in large N , as for a thermodynamic limit; in addition, we are inter-
ested in large values of n, too, such as n/N be constant; for large n the continuum approximation
to the spin lattice is a satisfactory approximation.

We proceed now to estimate the change brought in the ground-state energy by reversing n spins.
The reversed spins can be arranged in various geometric configurations. For instance, they may
be isolated (separated, or ”punctual”) spins, in which case they change the energy by

δE1 = 8Jn ; (4)

they may be arranged along lines, not necessarily connected, of various shapes and orientations;
the energy change brought by such a line of reversed spins is given by

δE2 ' 4Jn , (5)

where the ”ends” contribution (4J) can be neglected for large n. One can see easily that a similar
energy change proportional to n is brought by several disconnected spin-lines, too. The lines
may also intersect with one another, the corresponding energy change being also given by (5).
Finally, the reversed spins can be arranged such as to form ”islands”; these ”islands” may have
again various shapes and orientations, and they can also be disconnected, or may intersect with
one another. The energy change coresponding to such spins ”islands” is 2Jl, where l is the length
of the ”islands” boundary, providing the boundary is smooth enough (if not, we get contributions
of the type given by (4) and (5), i.e. proportional to n). A limiting case of such an ”island”
corresponds to a ”cigar”-like shape; the energy change associated with such a ”degenerate island”
is proportional to n. Another limiting case of spins ”islands” is a quasi-circular ”island”, whose
energy change is given by

δE3 = 2Jl ' 4J
√

πn . (6)

For another type of spins ”islands”, whose shape differ much of a circle, the corresponding energy
will be placed somewhere between δE3 ∼

√
n and δE1,2 ∼ n. We note that the energies of the

system can, therefore, be classified according to the types of these independent, geometrical objects
consisting of reversed spins; for a given n their energies are continuously distributed between the
lowest value δE3 ∼

√
n and the highest value δE1,2 ∼ n; we note also that the largest part of

them, that is the largest fraction of their number Cn
N , are such that their behaviour resembles

more the dependendece ∼
√

n than ∼ n, in the sense that the energy of these states depends on
n weaker than n; in fact, the states whose energies go like n are only ”marginal” states, the great
majority of the states having energies that are weaker than n; the number of perfectly circular
”islands”, whose energies are exactly of the type ∼

√
n, is also very small in comparison with

the rest of states. This peculiarity of the system, namely that of having the energies of almost
all of its states behaving weaker than n, has important consequences on the thermodynamical
behaviour of the system. The energies of all these states are in fact parametrized by the length
l of the geometrical objects (the border length for spins ”islands”, the length of the spins lines,
the ”length” of the separated spins being defined as the number of spins); had we were able to
know the multiplicity of the geometrical objects with a given l, then we were able to compute the
partition function. However, we can obtain an insight into the qualitative behaviour of the system
by using the remarks made above.

Indeed, at lower temperatures the ”weaker” states might not be activated at all, as their energy
is too low; in fact, the energies of these ”weaker” states have not a thermodynamic character, in
the sense that they go weaker than ∼ n = Nx, where x = n/N is the fraction of the reversed
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spins; for instance,
√

n =
√

N ·
√

x, which correspond to a vanishing energy per spin in the
thermodynamic limit N → ∞. At low temperatures the ”weaker” states may not be able to
ensure a thermodynamic behaviour of the system. Only for higher temperatures, when higher-
energy states come into play, i.e. those states whose energies are closer to ∼ n, the system may
acquire a ”good” thermodynamics. This may indicate a phase transition, as, in fact, we expect in
these systems.

The mean-field assumption to be made presently is suggested by the following remark. Since the
energy of the geometrical objects depends only on their length l, we may write the ground-state
energy (2) as E = −2JN = −2πJR2 = −JRL, where R is the radius and L = 2πR is the length
of the circle with area N = πR2, and compute its small variations as

δE = 2JRδL = 4πJR
√

n/π = 4πJ
√

N/π
√

n/π = 4J
√

Nn (7)

for quasi-circular ”islands”(the extra factor −2 in δE comes from the spin reversal); comparing this
energy change with δE3 given by (6) for one ”island”we can see that (7) amounts to taking together

δE/δE3 =
√

N/π ”islands”, and assume that they behave as one statistical entity whose energy has

a correct thermodynamic character: indeed,
√

Nn ∼ Nx. This suggests to divide all the ”weaker”
states in groups, such as the total energy of each group be approximately δE = 4J

√
Nn, and

assume that each group behaves as an autonomous statistical entity. Each group includes lesser
and lesser states, as we go from the quasi-circular ”islands” to the ”marginal” states corresponding
to spin lines or to separated spins, while their energy is not much distorted by replacing it with
δE = 4J

√
Nn; indeed, the spin lines, whose group multiplicity is unity, has an energy δE2 ' 4Jn,

which does not differ too much from δE = 4J
√

Nn, providing x = n/N is not very small; the same
conclusions holds also for separated spins, where δE = 4J

√
Nn is to be compared with δE1 = 8Jn.

We assume, therefore, that every group of states brings an energy change δE = 4J
√

Nn. The
assumption that all the ”weaker” states in each group behave like one statistical object is the
main assumption of the mean-field theory; it implies that all the states belonging to a group are
correlated in a certain sense. We emphasize that such a mean-field assumption is only meant to
describe qualitatively, and in thermodynamical terms, a possible phase transition in the system,
but we should be aware that it may lead to unrealistic quantitative results, in virtue of its rather
arbitrary character. The arbitrariness comes from the assumption that the ”weaker” states in each
group are correlated and behave as one statistical entity. The multiplicity of various groups is
obtained by dividing the corresponding number of states by the factor by which we have multiplied
the energy of those states; for instance, the multiplicity of the groups containing the quasi-circular

”islands” is the number of the quasi-circular ”islands” divided by δE/δE3 =
√

N/π, while the
multiplicity of the ”marginal” states is unity. These dividing factors decrease, therefore, gradually
on passing from the ”weakest” states (quasi-circular ”islands”) to less ”weaker” states. The total
number of states is given by Cn

N in (3), and on comparing this number with the dividing factors, we
can see that the latter do not change significantly the total number of states; in other words, the
total number of groups can be taken as being the same as the total number of states; this is indeed
reasonable, since the largest groups are made of the scarcest states (quasi-circular ”islands”). We
may assume therefore that the groups multiplicity is Cn

N .

With these assumptions we can pass now to compute the partition function of the system,

Z =
1

2N

∫
dn · e−4Jβ

√
Nn+ln Cn

N , (8)
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where β = 1/T, T being the temperature. Using the Stirling formula we can recast the partition
function as

Z = N
∫ 1

0
dx · f(x) , (9)

where

f(x) = eΦ(x) , Φ(x) = −4JβN
√

x−Nx ln x−N(1− x) ln (1− x)−N ln 2 . (10)

We estimate the integral in (9) by the method of the steepest descents. Equation

Φ
′
(x) = −2JβN√

x
+ N ln

(
1

x
− 1

)
= 0 (11)

has no solution for Jβ larger than a certain critical value Jβc, and has two solutions (one evolving
rapidly to zero, and another, denoted by x0, evolving rapidly to 1/2) for Jβ smaller than Jβc.
The critical temperature Tc = 1/βc is given by

Φ
′
(xc) = −2JβcN√

xc
+ N ln

(
1
xc
− 1

)
= 0 ,

Φ
′′
(xc) = JβcN

xc
√

xc
− N

xc(1−xc)
= 0 .

(12)

We obtain from these equations the critical concentration of reversed spins xc = 0.1 and the critical
temperature given by Jβc = 0.35. It is noteworthy how close is this critical temperature to the
exact value Jβc = 0.44.[3]

At high temperatures (Jβ � Jβc) the function f(x) is highly peaked on x0 close to 1/2 in the
thermodynamic limit N →∞, and the system has a ”good”thermodynamics: the steepest descents
work, the distribution f(x) has a dispersion ∼ 1/

√
N . In this limit x0

∼= 1
2

(
1−

√
2Jβ

)
and the

magnetization
M = mN (1− 2x) ∼ 1/T , (13)

i.e. we obtain the Curie law; m in (13) denotes the magnetic moment of one spin. The free energy
in this case is given by

−βF = −4JβN
√

x0 −Nx0 ln x0 −N(1− x0) ln (1− x0)−N ln 2 , (14)

and we obtain the specific heat c ∼ 1/T 2.

On decreasing the temperature, and approaching the critical temperature, the distribution f(x)
flattens gradually, and the ”good” thermodynamics is degraded. The fluctuations diverge, and
below the critical point the function f(x) vanishes, while being peaked at x = 0; similarly, the
partition function vanishes, in the thermodynamic limit.[7] Consequently, the only acceptable
solution for β > βc is x = 0, i.e. the system is ferromagnetically ordered with M = mN . At the
critical temperature the mgnetization has a sudden fall at mN(1−2xc), followed by a rapid decrease

to zero. We obtain easily from (11) and (12) x0 − xc
∼= (βc − β)1/2; hence, the magnetization has

an infinite slope at Tc, of the form ∼ − (T − Tc)
−1/2. Though irrelevant, we compute nevertheless,

as usually, the free energy slightly above the critical temperature, and obtain the specific heat
c ∼ (T − Tc)

−1/2, i.e. the specific heat has an infinite jump at the critical tempearture (c vanishes
for T < Tc). The free energy and the energy are continuous at Tc. All these results are typical for
a mean-field theory.
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Similar results are obtained for the three-dimensional system. The energy associated with the
two-dimensional ”islands” has now a thermodynamic character, i.e. it goes like n. It is the three-
dimensional ”islands”now that are very peculiar, in the sense that their energy is ”’weaker” than n;
the energy of quasi-spherical ”islands” is, for instance, δE4 = 2 (36π)1/3 Jn2/3. Taking into account
the variation of the surface associated with such three-dimensional ”islands” we get the energy

δE = 6JN1/3n2/3 , (15)

such that the partition function is given by

Z =
1

2N

∫
dn · e−6JβN1/3n2/3+ln Cn

N . (16)

Following the same procedure as above we obtain the critical concentration xc = 0.04, and the
critical temperature given by Jβc = 0.27; we note again that this value is very close to 0.22,
considered as being practically the exact value for the simple cubic lattice.[4] The magnetization
and the specific heat have the same ”critical exponents” as in the two-dimensional case.

We note finally that non-thermodynamic states, i.e. states whose energy is ”weaker” than n, do
not exist in one-dimension, where there is no transition.
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