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Abstract

The generalized sea-displacement operators introduced recently by Setlur and Chang for
Fermi systems (see, for instance, Phys. Rev. B57 15 144 (1998)) are discussed with regard to
their Bose character. It is shown that, apart from some technical details, the bosonic nature
of these operators calls for certain precautions in direct computations, whose implications
remain to be further explored by the general theory.

In a series of cca 6 recent preprints[1] and one printed paper[2] Setlur and Chang engaged
themselves in delineating a general theory, aimed at solving exactly, or, at least, ”exceedingly
plausibly”,[2] the interaction problem in both Fermi and Bose systems, irrespective of the interac-
tion strength (or its sign), and in any spatial dimensions. Drawing largely from the illuminating
work of Castro-Neto and Fradkin,[3] and generalizing the inspiring concepts of Haldane,[4] Setlur
and Chang rework the whole body of the many-body theories in an original manner, based on the
central concept of bosonization.[5] In particular, the single-particle propagator is claimed to be
computed ”exactly for all wavelengths and energies”, including ”short-wavelength behaviour”.[2]
While the general, programmatic framework of the theory is well-established by these authors,
there remain still a few technical details to be ellucidated, in order to complete this powerful
approach in all its aspects. In this context, we offer here a few comments on such questions.

For Bose systems Setlur and Chang[2] introduce condensate-displacement operators which satisfy
Bose commutation relations. Similarly, sea-displacement operators are postulated for Fermi sys-
tems, satisfying Bose commutation relations, and it is assumed that products of Fermi operators
have the same functional dependence on these operators as for the case of the Bose systems. Mak-
ing use of the analogy with the Bose systems, the following relations are proposed, and defended,
for the Fermi systems:
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k+q/2ck−q/2 = (

N

< N >
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where ck are Fermi operators (spin label is irrelevant here and, therefore, it is omitted), ak(q) are
sea-dispacement operators,

[ak(q), a
+
k′(q

′)] = δkk′δqq′ , [ak(q), ak′(q
′)] = 0 , (2)

ak(0) = 0 , (3)

and the coefficients T1, T2 and Λ are given by:

T1(k, q) =
√

1− nk+q/2

√
1− nk−q/2 ,

T2(k, q) =
√

nk+q/2nk−q/2 , (4)

Λk(q) =
√

nk+q/2(1− nk−q/2) ;

nk in the above formulas represents the Fermi occupation number (occupation number operator),
nk is its expectation value on the ground-state, N stands for the operator of the total number of
particles and 〈N〉 denotes the average number of paticles. As one can see, eqs. (1) and (2) provide
a bosonic representation of the particle-density operators for Fermi systems. The occupation
number itself has a bosonic representation in this theory, given by

nk = nβ(k)
N

< N >
+

∑
q

a+
k−q/2(q)ak−q/2(q)−

∑
q

a+
k+q/2(q)ak+q/2(q) , (5)

where

nβ(k) =
1

exp(β(εk − µ)) + 1
(6)

is the Fermi distribution.

The exact bosonic character of the Fermi sea-displacement operators is embodied in the ansatz[2]

ak(q) =
1

√
nk−q/2

c+
k−q/2M(k, q)ck+q/2 , (7)

where the operator M(k, q) has to be determined in such a way as to ensure the Bose commutation
relations required by (2). In the limit of the random-phase approximation (RPA) eq. (7) is also
written as

ak(q) =
1

√
nk−q/2

c+
k−q/2(

nβ(k − q/2)

< N >
)1/2eiθ(k,q)ck+q/2 , (8)

where the phase θ(k, q) is a functional of the number operator.

Equation (8) raises some technical difficulties. First, we notice that the Fermi number operator
nk has the idempotency property n2

k = nk, and, therefore,
√

nk−q/2 in (8) might be taken simply
as being equal with nk−q/2. Indeed, a general operatorial functional f(A) may be defined by the
associated Taylor series

f(A) =
∑
m=0

f (m)(a)

m!
(A− a)m ; (9)
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for A = nk and a = 1 one obtains from (9)

f(nk) = f(1) + (1− nk)(f(0)− f(1)) , (10)

which, for the particular case f =
√

x, leads to
√

nk = nk. In addition, the factor 1/
√

nk−q/2 in (8)
might, conceivably, suggest divergencies problems, in view of the fact that the number operator
is not an inversable operator; a certain sense should, consequently, be assigned to this writing in
(8), and one of the simplest is to replace nk−q/2 by nk−q/2 + εI, where I is the identity operator,
and take the limit ε → 0 at the end of the calculations. Doing so, we obtain

1
√

nk−q/2

→ 1

nk−q/2 + εI
=

1

ε
(I − 1

ε + 1
nk−q/2) , (11)

and
1

√
nk−q/2

c+
k−q/2 →

1

ε
(I − 1

ε + 1
nk−q/2)c

+
k−q/2 =

1

ε + 1
c+
k−q/2 → c+

k−q/2 . (12)

The same result is obtained working with the function f = 1/
√

x + ε, and using the expansion
(9). Equation (8) becomes then

ak(q) = c+
k−q/2(

nβ(k − q/2)

< N >
)1/2eiθ(k,q)ck+q/2 , (13)

and using the fact that θ(k, q) is a functional of the number operator one obtains straightforwardly

[ak(q), a
+
k (q)] =

nβ(k − q/2)

< N >
(nk−q/2 − nk+q/2) . (14)

Comparing this result with (2), one can see that the bosonic character of the sea-displacement op-
erators ak(q) should probably be understood in a special, and more general, sense, which remains
to be further explored, in order to ”capture what one is looking for”.[2] A possible suggestion
toward solving this question would be that of taking the expectation value of (14) over the Fermi
sea, which would lead, however, to the desired, approximate, bosonic property at the Fermi surface
only, in contrast with Setlur and Chang’s declaration that the new Fermi-sea displacement opera-
tors are ”no longer restricted to be close to the Fermi surface”.[2] Moreover, the sea-displacement
operators defined by (13) are only consistent with (5) for

nk

< N >

∑
k1

nk1n
β(k1)−Nnβ(k)

 = 0 , (15)

which requires nβ(k1) = nβ(k) = constant , i.e. the absence of the Fermi surface. Apart from
the interesting consequences of such a physical picture, one can emphasize here the apparent
consistency of the present bosonic theory for the Fermi systems.

The above considerations are not restricted to the RPA limit. Indeed, making use of (12) the
general ansatz expressed in (7) becomes

ak(q) = c+
k−q/2M(k, q)ck+q/2 ; (16)

let |v >= |1, 1, 1, ..., 1, 0k−q/2, 1, ...1, 0, 0, 0, ....0, 1k′ 6=k+q/2, 0, 0, 0, ... > be a state vector in the space
of the occupation numbers, i.e. an empty fermion state at k − q/2 below the Fermi surface,
and an occupied fermion state at k

′ 6= k + q/2 above the Fermi surface; then, one obtains
< v|[ak(q), a

+
k (q)]|v >= 0, which certainly is at variance with the bosonic character of the
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sea-displacement operators. This suggests again that the physical states space where the sea-
displacement Bose operators are defined should have a much subtler structure for the Fermi
systems, in accordance with the distinct particularities of these systems.

In conclusion, one may say that the bosonic properties of the sea-displacement operators intro-
duced by Setlur and Chang for Fermi systems[1],[2] might be operational within certain, carefully
determined, theoretical schemes, and that simple-minded, direct computations might be deceitful
in the framework of a bosonization approach of such boldness and subtlety.
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