
1

Journal of Theoretical Physics

Founded and Edited by M. Apostol 35 (1998)

ISSN 1453-4428

Fermi Liquid Theory
M. Apostol

Department of Theoretical Physics,
Institute of Atomic Physics,

Magurele-Bucharest MG-6, POBox MG-35,
Romania

email:apoma@theor1.ifa.ro

Abstract
Landau’s theory of the Fermi liquid is reviewed.

He3 liquefies at cca 3.2K under normal pressure, where its mean inter-particle separation of a few
angstroms is comparable with the range of the interaction potential (and with the mean inter-
particle separation in the corresponding ideal gas); its thermal wavelength is about 8Å, so that,
under these conditions, He3 is a quantum liquid of fermions, or a Fermi liquid (sometimes called a
normal Fermi liquid too). The motion of the He3 atoms in the (repulsive) self-consistent, mean-field
potential is affected by inertia effects, i.e. the particles possess an effective mass, and consequently
they obey the Fermi distribution, like an ideal Fermi gas. The elementary excitations are therefore
quasi-particles, lying near the Fermi level; indeed, the states lying deeply into, or highly above,
the Fermi sea require, on one hand, high excitation energies, according to the Fermi character
of the distribution, and, consequently, they do not contribute much to the liquid properties; on
the other hand, they are neither well-defined excitations, because the interaction may redistribute
their energy, and momentum, in many ways, and, consequently, it may affect them drastically. It
follows that the interaction does not affect the step-wise shape of the Fermi distribution, and the
relevant quasi-particles may be viewed as slight distortions of the Fermi sea near its surface; this
is especially true for high values of particles concentration, where the Fermi energy is high and
the treatment of the interaction effects has a perturbative character. Similarly, the temperature
T smears out the step-wise Fermi distribution over a range of the order of T , much smaller than
the Fermi energy. This is Landau’s theory of the Fermi liquid.

He3 preserves its nature of a Fermi liquid over a certain, limited, range of parameters, of course;
at very low temperatures, for instance, weak attractive interactions of magnetic origin pair up
the He3 atoms into bosons, which exhibit superfluidity; under pressure He3 may even solidify at
low temperatures, in a rather disordered structure which requires additional entropy; as such,
solid He3 may serve as a natural tool for reaching significantly low temperatures; etc. Another
example of a certain Fermi liquid can be provided by the particular case of the electrons in solids,
which interact through long-range Coulomb potential, in contrast to He3 where the potential
is short-range. However, the long-range part of the Coulomb potential is screened out by the
positively-charged, neutralizing ionic background, so that the system is stable. In addition, the
electronic liquid in solids is degenerate at practically any usual temperature, due to the light mass
of the electrons, and the electronic thermal wavelength is very large.

The Fermi sea and the Fermi surface are defined by minimizing the ground-state energy with
respect to the fermion occupancy under the constraint of a fixed number of particles N ; the
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chemical potential µ is thereby obtained, and the Fermi momentum pF . The volume of the
Fermi sea is determined by the concentration N/V of the particles, and for an isotropic liquid
N/V = gp3

F /6π2h̄3, where g is the spin weight. The shape of the Fermi surface may, however,
be different from a sphere, depending on the external fields which act upon the particles, as,
for instance, the crystal field acting upon the electrons in a solid. The interaction does not
change, however, the volume of the Fermi sea, since the number of particles is conserved; a
common, isotropic interaction preserves also the shape of the Fermi sea, and, therefore, the Fermi
momentum pF is preserved, too. The quasi-particle energy is a function ε(p) of the momentum
p, and it can be written as

ε(p) = µ + vF (p− pF ) , (1)

where vF = ∂ε/∂pF is the Fermi velocity, and p is close to pF . These quasi-particles lie in a narrow
region ∆p around the Fermi surface, determined by the interaction effects, and their uncertainty
in momenta is ∼ (∆p)2/pF ; this uncertainty comes from the quasi-particles interaction, i.e. from
the quasi-particles scattering, and one can see that it is negligible as long as the quasi-particles
are located around the Fermi surface, i.e. as long as ∆p � pF . The corresponding lifetime of
the quasi-particles is τint ∼ h̄µ/ (ε− µ)2, and it is long enough under the same condition, which
means that the range over which the quasi-particles are well-defined around the Fermi surface
increases with increasing the particles concentration. Similarly, the quasi-particles are spread out
around the Fermi surface over a ∆p range due to the thermal effects, such that ∆p ∼ T/vF ,
and the corresponding uncertainty in momenta is (∆p)2 /pF ∼ T 2/v2

F pF � µT/v2
F pF ∼ ∆p �

µ2/v2
F pF ∼ pF , which means again that the quasi-particles momenta are pretty well determined;

similarly, their uncertainty in energy is ∼ T 2/µ, so that their lifetime is τT ∼ h̄µ/T 2, much
longer that the characteristic time of the Fermi level µ. The two uncertainties, one due to the
interaction and another due to the temperature, are competitive, and the net lifetime τ is given by
τ−1 =

(
τ−1
int + τ−1

T

)
n, where n is the Fermi distribution, according to the probabilistic nature of the

quasi-particles. All these are consistent with the linear series expansion (1) of the quasi-particle
spectrum.

The lowest energy levels of a Fermi liquid consists of particle-hole excitations around the Fermi
surface, and they are given by

ε(p) = vFp , (2)

where p denotes here the small variation in the momentum; noteworthy, this energy depends on
the relative orientation of the Fermi velocity with respect to the momentum, and, incidentally,
the ”superfluidity” criterion v < vFp/p is never satisfied; one says that the excitations (2) form a
particle-hole continuum, and this is called a Fermi-type spectrum. In principle, the quasi-particle
energy (1) may also depend on the particle spin s; however, this dependence may only include
contributions of the s2- or (sp)2-type; the former is irrelevant, while the latter splits the 2s + 1
degenerate levels into (1/2)(2s+1) levels, each twofold degenerate; so, one can say that the quasi-
particles have a one-half spin. The spin weight g accounts for the corresponding density of states
in the subsequent calculations.

Both the quasi-particles and the temperature distort the Fermi distribution by a certain, small,
amount δn(ε); consequently, one may define the quasi-particle energy ε(p) by the corresponding
small change in the energy

δE =
gV

(2πh̄)3

∫
dp · εδn(ε) , (3)

while the entropy is the Fermi entropy

S = − gV

(2πh̄)3

∫
dp [n ln n + (1− n) ln(1− n)] ; (4)
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of course, this corresponds to the Fermi distribution

n =
1

exp [(ε− µ)/T ] + 1
(5)

for the quasi-particles at thermal equilibrium and for a given number N of particles. The distri-
bution (5) is smeared out over a small T -range around the chemical potential µ, and the thermal
effects can be computed in the same way as those for the ideal Fermi gas (including the change
in the chemical potential due to the temperature). It remains, of course, to account for the inter-
action effects, especially in the density of states at the Fermi surface, i.e. the dependence ε(p),
which amounts, in principle, to determining the two parameters µ and vF in (1). Likewise (3)
small changes in the distribution determine small changes in the quasi-particle energies, which
may be represented as

ε(p) = p2/2m +
g

(2πh̄)3

∫
dp′·f(p,p′)δn(ε′) ; (6)

the momenta p and p′ are close to the Fermi surface, and the function f(p,p′), which is sym-
metrical in its variables, (and may also depend on spin) depends on the particle interaction. The
energy ε(p) is determined in (6) to the same accuracy as in (1); it is the hamiltonian of the
quasi-particles, and it may depend on the position, too, for a slightly perturbed liquid, as in a
quasi-classical description. It is worth noting here the self-consistent character of the equation
above, together with the quasi-particles Fermi distribution (5) (and, as such, the quasi-particle
energy depends also on temperature, though to a higher-order approximation). The f -term in
(6) accounts for the quasi-particles scattering, and one says that it dresses the free particles with
interaction, the free particles being, therefore, bare particles. Solving for the interaction effects
in terms of quasi-particles is also called the renormalization of the interaction, the quasi-particles
being renormalized particles. The f -term in (6) represents also the reaction of the liquid to a par-
ticle excitation, and, in this respect, the theory of the Fermi liquid amounts to a linear response
theory. It is important to notice in this case that the interaction integrals of the f -type in (6)
include the density of the quasi-particles states at the Fermi surface, and the latter is large for
high values of the particle concentration (i.e. for a well-defined quasi-particle picture); indeed,
the density of states DF is given by

dτ = g
V

(2πh̄)3
dp = g

V

(2πh̄)3

dsdε

vF

= g
V

(2πh̄)3

p2
F

vF

dodε = DF dodε , (7)

where dτ is the infinitesimal number of states, ds is the surface element, and do = sin θdθdϕ is the
infinitesimal solid angle, and one can see that DF increases with increasing pF . Consequently, the
f -function, and the interaction effects, must be weak, according to the perturbational character
of the theory. Noteworthy, the small variations of the Fermi distribution at zero temperature,
located at the Fermi surface, are δn = −δ(ε− µ)δε, and

δ(ε− µ) =
∫ ds

vF

δ (p− pF ) , (8)

which, together with (6), determines, in principle, the form of the f -function and the corresponding
small changes δn and δε. From (6) one may infere the form

µ = p2
F /2m +

g

(2πh̄)3

∫
dp′·f(pF ,p′)n(ε′) (9)

for the chemical potential µ, to the first approximation.
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By Galilei’s principle of relativity the momentum of the liquid is given by∫
dτ · pn = m

∫
dτ · ∂ε

∂p
n ; (10)

for a quasi-particle distortion δn one obtains∫
dτ · pδn = m

∫
dτ · ∂ε

∂p
δn +

m

V

∫
dτdτ ′ · ∂f

∂p
nδn′ =

(11)

= m
∫

dτ · ∂ε

∂p
δn− m

V

∫
dτdτ ′ · f ∂n′

∂p′ δn ,

or
p

m∗ =
p

m
− g

(2πh̄)3

∫
ds′ · v

′
F

v′F
f(p,p′

F ) , (12)

where m∗, defined by v =∂ε/∂p = p/m∗, is the quasi-particle mass. For a spherical Fermi surface

1

m∗ =
1

m
− g

pF

(2πh̄)3

∫
do · cos θ · f , (13)

where θ is the angle between pF and p′
F , do = sin θdθdϕ, and f depends on pF and cos θ.

A displacement field u generates a volume change δV = V divu; for sound, whih is adiabatic,
this implies a potential energy per unit volume −(1/2V )(∂p/∂V )(δV )2, which obviously im-
plies the (adiabatic) compressibility κ = −(1/V )(∂V/∂p); this energy can further be written
as (ρ/2)(∂p/∂ρ)(divu)2, where ρ = mN/V is the density; the corresponding kinetic energy per

unit volume is ρ
•
u

2
/2, so that the sound velocity u is given by

u2 = ∂p/∂ρ = − V 2

mN

∂p

∂V
=

1

ρκ
. (14)

Since Ndµ = V dp−SdT , one gets for vanishing temperatures (where there is no need to distinguish
between adiabatic and isothermal compressibility)

u2 = −V

m

∂µ

∂V
=

N

m

∂µ

∂N
, (15)

where use has been made of the fact that the chemical potential µ depends only on the concen-
tration N/V . This equation may serve to determining the chemical potential. Now,

δµ =
∂ε

∂pF

δpF +
1

V

∫
dτ ′ · fδn′ , (16)

which agrees with (9), and where the effective mass m∗ is to be noted, as for a local change
in the density; it is also worth remarking that the changes associated with the compressibility
amount, naturally, to changes in the distribution at the Fermi surface. The first term in the
right-hand side of (16) gives [(2πh̄)3/4πgV m∗pF ] δN for an isotropic Fermi sea; the second term
gives [(1/4πV )

∫
do′ · f ] δN , so that

u2 =
p2

F

3mm∗ +
N

4πmV

∫
do′ · f(pF ,p′

F ) , (17)
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or

u2 =
p2

F

3m2
+

gp3
F

3m(2πh̄)3

∫
do′ · (1− cos θ) f(pF ,p′

F ) . (18)

It is worth noting, however, that the sound does not propagate in a Fermi liquid at vanishing
tempeartures, as a consequence of its total absorption by the particle-hole excitations; this is
called the quasi-particle damping of the sound. Indeed, the absorption coefficient of the sound is
defined as γ ∼ 1/ωτs ∼ λ/l, where ω is the sound frequency, λ is its wavelength, τs is the sound
lifetime and l is the mean free-path of the sound; by definition 1/l is proportional to the viscosity;
for ωτ � 1, where τ is the quasi-particles lifetime, the frequency is as low as only the temperature
effects govern the quasi-particles lifetime, so that the absorption rate is γ ∼ ω2/T 2 (by definition,
τs ∼ (1/ω) (1/ωτ) (1/ω), where a characteristic frequency due to the interaction processes appears
in the last factor); hence, the sound can not be propagated at vanishing temperatures, where the
viscosity of the quasi-particles is infinite. For ωτ � 1 the thermal effects are negligible, and the
absorption rate goes, obviously, like γ ∼ ω2. A minimum of γ appears evidently in-between, of
the order of γ ∼ T 2, which shows that a certain sound-type disturbance can be propagated even
at vanishing temperature; obviously, this is nothing but a local perturbation in the quasi-particles
density, i.e. a space-time perturbation of the Fermi distribution; this perturbation is called zero
sound, in order to distinguish it from the ordinary, first, sound (and to distinguish it from the
second sound which may propagate in superfluids). The zero sound (like the superfluid sound u
too) is, in fact, ordinary sound propagating in the context of interaction and at low temperatures,
i.e. the aspect the ordinary sound takes in quantum liquids.

The slight space-time changes in the particle distribution are described by the kinetic, or Boltz-
mann, equation

∂n

∂t
+

∂n

∂r

∂ε

∂p
− ∂n

∂p

∂ε

∂r
= 0 , (19)

where the collision rate of the quasi-particles is too low to be kept in the right-hand side; and
obviously the motion must satisfy ωτ � 1, as being the motion of the quasi-particles. For
n = n0 + δn, where n0 is the unperturbed Fermi distribution and δn is a ω,k-wave, one gets

(ω − pk/m∗) δn = pk
gpF

(2πh̄)3

∫
do′ · fδn′ , (20)

for a spherical Fermi surface. Noteworthy, the changes in the distribution are localized at the Fermi
surface. This is a typical equation describing the self-consistent effects of interacting particles (and
as such it is called, among others, the Bethe-Salpeter equation). In principle, the f -function may
depend on spin, too, in which cases spin summations are included in the g factor. First, the
equation is solved for the spin dependence of the changes δn, the solution describing thus both
particle- and spin-density waves. Thereafter, it is easy to see that the main contribution to the
integral comes from pF close to p′

F in the f -function, so that one may denote this contribution of
f by f(0) (spin effects included). Under these circumstances equation (20) amounts to

2π2h̄3

gm∗pF f(0)
=

1

2

∫
dθ · sin θ

cos θ

s− cos θ
, (21)

where s = ω/vF k; the integral is −1 − (s/2) ln |(s− 1)/(s + 1)| (which, sometimes, is called the
Lindhard’s function), and the equation has solution only for f(0) > 0, which amounts to repulsive
interaction, and for s = ω/vF k > 1, this latter condition ensuring the absence of the excitation
processes for the quasi-particles, i.e. the existence of the quasi-particles that propagate the zero
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sound. For small values of the left-hand side the solution is obtained for s →∞, where the integral
goes like 1/3s2; one obtains

ω =

[
2

gm∗
N

V
f(0)k2

]1/2

; (22)

this is particularly relevant for interacting electrons (g = 2), where one can see easily that f(0) =
4πe2/k2, i.e. the Fourier transform of the Coulomb potential; indeed, in the long wavelength limit
k → 0 this is a strong coupling, and the corresponding frequency

ω =

(
4πNe2

m

)1/2

(23)

is that of the particle-density waves called plasmons (due to the long-range correlations the bare
mass of the electrons is practically left unchanged). On the contrary, in the opposite limit of high
values of the left-hand side of (21) one obtains the genuine zero sound frequency

ω = vF

{
1 + 2 exp

[
−4π2h̄3/gm∗pF f(0)

]}
k , (24)

where f(0) = V (0), i.e. the long-wavelength limit of the (short-range) original particle interaction.
Despite their appearance as affecting only one-particle states (and in contrast with the quasi-
particles), the zero sound, as well as the sound in superfluids, are in fact generated by interaction
with the other particles, and as such they are collective modes of the liquid motion, like ordinary
sound; and like the plasmons, where the long-range character of the Coulomb interaction affects
all the particles.

The f -function in (6), expressing the change in the energy of a quasi-particle as a result of its
interaction with the other quasi-particles located at the Fermi surface, can be derived from the
original particle interaction. Indeed, for high values of particles concentration, and for an original
interaction of the type V + σσ′U , where σ, σ′ = ±1 are spin variables for a one-half spin one gets

fσσ′ = V (0) + σσ′U(0)− [V (p− p′) + U(p− p′)] δσσ′ (25)

for short-range interaction, where the right-hand side includes the Fourier transforms of the in-
teraction, and the momenta are close to the Fermi surface. It is worth noting in (25) the direct
interaction corresponding to a vanishing momentum transfer, as well as the exchange contribution
corresponding to a finite momentum transfer. For long-range interactions the long-range terms in
(25) are absent, except for the k → 0 limit, while the short-range terms are those produced by
screening. It is important to notice that the frequency vanishing and the vanishing of the momen-
tum transfer are not intervertible limits, due to the particle-hole continuum of excitations. The
Coulomb interacting electrons in metals form a special liquid, which may be termed an electron
liquid; the long-range degrees of freedom are affected by plasmons, while the remaining short-range
motion is that of a weakly-interacting Fermi liquid; the corresponding f -function of the latter is
given by (U = 0)

fσσ′ = − 4πe2

|p− p′|2 /h̄2
δσσ′ , |p− p′| > h̄kc , (26)

where kc is a certain cut-off wavevector; it is reminiscent of the Thomas-Fermi screening wavevector

qTF = (4mpF e2/πh̄3)1/2 . (27)

The effective mass of the electrons would be therefore

m∗ = m

{
1 +

me2

πh̄pF

[
1− β2/4 + ln(β/2)

]}
, (28)
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where β = kc/kF (where kF denotes the Fermi wavevector); for electrons at metallic concentrations
one obtains β ∼ 1 from the minimum of the ground-state energy, so that the electron effective mass
is practically left undressed (another contribution to the effective mass comes from the electron-
plasmon coupling, which likewise is very small). The f -function above may also be used as a
scattering amplitude, leading to small life-time effects for the short-range interacting electrons;
the above short-range interaction which appears in (26) is a screened Coulomb interaction, similar
to the Thomas-Fermi screening.

The change δµ in the chemical potential due to a slight spatial imbalance δn(r) in the particle
concentration is δµ = vF δpF = (π2h̄3vF /p2

F )δn (the total spatial variation of the Fermi distribution
vanishes, so that the quasi-particle interaction does not contribute to this change); this change
equals the potential energy −eϕ, which must satisfy the Poisson equation k2ϕ = 4πe + 4πeδn =
4πe− (4e2p2

F /πh̄3vF )ϕ; hence, the Thomas-Fermi screening of the Coulomb potential in (27).

The magnetic momentum of an electron is 2βs = βσ, where β = eh̄/2mc is the Bohr magneton
(2 is the gyromagnetic factor, s = 1/2 is the spin and c is the light velocity). In a magnetic field
H its energy changes by

δεσ = −βσH +
1

(2πh̄)3

∑
σ
′

∫
dp′ · fσσ

′δnσ
′ ; (29)

this change takes place at the Fermi surface, so that

δεσ = −βσH − m∗pF

4π2h̄3

∑
σ′

∫
dθ · sin θfσσ′δεσ′ , (30)

whose solution is

δεσ = −1

2
gβσH , (31)

where

g−1 =
1

2

[
1 +

m∗pF

4π2h̄3

∫
dθ · sin θ(fσσ − fσσ)

]
, (32)

with σ = −σ. The magnetization is given by

χH =
β

(2πh̄)3

∑
σ

∫
dp · σδnσ = −βm∗pF

2π2h̄3

∑
σ

σδεσ =
β2m∗pF

2π2h̄3 gH , (33)

whence the spin susceptibility

χ =
β2m∗pF

2π2h̄3 g . (34)

Making use of (26) one obtains

χ =
β2mpF

π2h̄3

[
1 +

me2

πh̄pF

ln(β/2)

]
(35)

for electrons. Similar computations hold for any other Fermi liquid. This is called the Pauli
paramagnetism; the orbital motion of the electrons gives the Landau diamagnetism, which is
minus one-third of the χ above.

The number of particles at finite temperatures is given by

N = g
V

(2πh̄)3

∫
dp · n , (36)
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where n is the Fermi distribution. Let F be given through f by

F = g
V

(2πh̄)3

∫
dp · fn ; (37)

according to the properties of the Fermi distribution it may be written as

F = g
V

(2πh̄)3

∫ dsdε

v
· fn = g

V

(2πh̄)3

∫
dodε ·

(
p2f/v

)
n =

= g
V

(2πh̄)3

∫
do

[∫ µ

0
dε ·

(
p2f/v

)
+

π2T 2

6

(
p2f/v

)′
µ

+ ...

]
= (38)

= F0 + g
V

(2πh̄)3

∫
do

[(
p2f/v

)
µ0

δµ +
π2T 2

6

(
p2f/v

)′
µ0

+ ...

]
,

where F0 is that quantity at zero temperature and µ0 is the chemical potential at zero temperature.
For a spherical Fermi surface and the conserved number of particles one obtains

δµ = −π2T 2m∗/6p2
F . (39)

The change in energy can be written as

δE = g
V

(2πh̄)3

∫
dp · ε(n− n0) , (40)

where n0 denotes the Fermi distribution at zero temperature; by using (38) for a spherical Fermi
surface one obtains

δE = g
V

12h̄3m∗pF T 2 =
π2T 2

2p2
F

m∗N ; (41)

hence the entropy

S = g
V

6h̄3m∗pF T , (42)

the free energy

δF = −g
V

12h̄3m∗pF T 2 , (43)

and the heat capacity

C = g
V

6h̄3m∗pF T = S ; (44)

as well as the change in pressure

δp = g
1

18h̄3m∗pF T 2 . (45)

The thermodynamic potentials Ω and Φ change by

δΩ = δΦ = δF = −g
V

12h̄3m∗pF T 2, (46)

when expressed in proper variables, i.e. µ instead of N , and, respectively, p instead of V in δF .
Noteworthy, δΩ0 = −Nδµ, so that the total change in Ω is −(gV/18h̄3)m∗pF T 2 = −2δE/3 =
−δ(pV ) = −V δp. Similarly, the change in Φ0 is V δp, which, together with (45), leads to a total
change −(gV/36h̄3)m∗pF T 2 = δ(µN) = Nδµ in Φ. From (45) one can see easily that Cp−Cv ∼ T 3

(as expected from S ∼ T ), and there is no need, therefore, to distinguish between the two heat
capacities (in particular, the zero sound does contribute insignificantly to the thermodynamic
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properties). By using again (45) one finds the coefficient of thermal expansion (1/V )(∂V/∂T )p =
−(gT/6V h̄3)∂(m∗pF )/∂p, with ∂Φ/∂p = V ; one can see that its ratio to the heat capacity is
independent of temperature (Gruneisen’s law).

Liquid He3 under normal pressure has a Fermi wavevector pF /h̄ ∼ 0.8Å−1 (from density), an
effective mass m∗ ∼ 2.4m (from the heat capacity), and a sound velocity u ∼ 190m/s (from
compressibility).

c© J. Theor. Phys. 1998, apoma@theor1.theory.nipne.ro


