
1

Journal of Theoretical Physics

Founded and Edited by M. Apostol 36 (1998)

ISSN 1453-4428

The basis of the Fermi liquid theory
M. Apostol

Department of Theoretical Physics,
Institute of Atomic Physics,
Magurele-Bucharest MG-6,
POBox MG-35, Romania

email: apoma@theor1.ifa.ro

Abstract

The basis of the Fermi liquid theory is shown, and the electronic liquid is briefly discussed.

Interaction may affect drastically the many-particle ensembles; for instance, an attraction, even
weak, between electrons, binds them up in pairs, leading to superconductivity; interacting fermions
in one dimension get bosonized; anisotropic fermions with ”nested” Fermi surfaces become non-
homogeneous, when interacting, and develop charge- or spin-density waves. All these are different
phases, and appear as symmetry breakings, spontaneous or induced; they are also termed as
instabilities of the many-body systems, under interaction. Hints toward their nature are often
obtained through studying the interacting two-particle problem, scattering included.

Leaving aside these cases, switching on the interaction may preserve the nature of the particles,
their statistics, the symmetries, and the (repulsive) interaction may behave perturbationally. How-
ever, even in this case, the ground-state is to be treated distinctly from the low-energy excitations;
indeed, the low energy of the latter may be comparable with the weak interaction effects, which
may result in new kinds of elementary excitations, as compared with the non-interacting system;
the most common case is probably provided by the quantum sounds in both interacting Bose
and Fermi ensembles. The general perturbational scheme for the ground-state is based on the
observation that, to the lowest order of perturbation theory, the wavefunction does not change,
while the energy changes by the average of the interaction over the unchanged (non-perturbed)
ground-state,

ψ = ψ0 + ... , E = E0 + (ψ0, Uψ0) + ... . (1)

The Fermi sea (as well as the one-particle plane waves), or the boson condensed ground-state,
are not changed, therefore, by interaction in this scheme, while a constant energy is acquired
by each particle, as if each of them were moving in a constant, external potential; in addition,
the individual fermions behave as if they would have, approximately, a different, effective mass.
Indeed, the only free parameters in the hamiltonian of a free quantum particle are the particle mass
and a constant potential (up to redefining momentum, occasionally). As such, this perturbational
scheme may be viewed as an even lower approximation than the quasi-classical approximation.
For the boson condensed ground-state the calculation of the energy correction within this scheme
proceeds by means of the particle operators turned c-numbers; a distinct particularity appears for
the Fermi sea, namely the quantum exchange effect between the fermion states, seen in what is
usually called the ”Hartree-Fock approximation”; in both cases the particles react as a whole to
the interaction, a feature called the ”random phase approximation”; this reaction is either static
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or dynamic, the latter implying virtually excited states, retardation and damping effects; all these
features have actually the aspect of an interacting mean-field; the difference between fermions and
bosons originates, trivially, in their distinct statistics, of course.

Naturally, the question of the validity of this perturbational scheme arises, or, as sometimes
termed, the ”convergence” of the perturbation theory for these ”normal” many-body systems.
Typically, the various orders of the perturbation theory may be viewed as containing factors of
the form ∑

s

v(q)/V

ε
; (2)

here the summation is extended over all the s states allowed by statistics, coupled by interaction to
the ground-state; their ”excitation” energy is denoted by ε in (2), where V stands for the volume
of the ensemble; of particular importance in (2) is the Fourier transform

v(q) =
∫
dr · v(r)e−iqr (3)

of the two-particle interaction potential v(r); the ”excited” states in (2) are connected to the
ground-state through the momentum (h̄q) and energy conservation, according to the invariance
under the space and time translations; in addition, the states s are real, not virtual ”excited” states,
i.e. their energies are related to their momenta through the free-particle Galilean relationship,
as for non-relativist particles. The estimation of (2) is different for bosons and fermions, as
well as for various space dimensions, but before proceeding one should emphasize the general
model-like assumptions for many-body systems: particles are point-like and the potentials are
Fourier-transformable; i.e., distances shorter than the typical atomic length (Bohr radius) are
meaningless, and the highly-repulsive ”hard-core” atomic potentials are replaced by delta-type
potentials, at most. Now, the most dangerous contribution to (2) comes from small q and ε, and
for three-dimensional fermions this means ε ∼ h̄2kF q/m, while the density of states is of the form
V · q2dq; the angular factors are rendered ineffective by the Fermi statistics, as one can see easily;
kF is the Fermi wavevector, and m denotes the fermion mass. In addition, kF ∼ 1/a, where a is
the mean inter-particle distance, the interaction may be represented as v(q ∼ 0) = va3, where v
is a characteristic average interaction energy per particle, and the integration may be extended
up to kF ; under these circumstance (2) is v/(h̄2/ma2) at most, and it leads to

v/(h̄2/ma2) � 1 (4)

i.e. the average interaction energy per particle must be much smaller than the particle localization
energy over inter-particle distance. This is the typical condition for the perturbation scheme of
the ”normal” many-body systems. The condition holds for two-dimensional fermions too, while
it diverges logarithmically for fermions in one dimension; as known, the perturbation scheme is
no longer valid for the latter. For bosons ε ∼ h̄2q2/2m, naturally, and the condition (4) holds
in three dimensions; the condensed ground-state of the bosons is stable under perturbations in
three dimensions. On the contrary, (2) diverges for bosons in two and one dimensions, and
the corresponding condensed ground-state is destabilized by fluctuations in these cases. As in
the one-dimensional case of fermions, the ground-state in these situations is the vacuum of the
corresponding elementary excitations; these systems are not termed anymore as being ”normal”
systems, though the term ”normal” is not too usually used for bosons in three dimensions either,
in view of their Bose-Einstein condensation.

An ensemble of N identical particles of mass m and interacting through a two-particle potential
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v is described by the hamiltonian

H =
∑

i

p2
i /2m+

1

2

∑
i6=j

v(ri − rj) , (5)

where i, j label the particles. For long-range potentials the stability of the system must be ensured,
as, for instance, in the case of Coulomb interacting electrons, where a uniform, neutralizing back-
ground of positive charges must be added (which may have its own dynamics, as well; as known,
this is often called the ”jellium” model of interacting electrons). The corresponding interaction

1

2
nN

∫
dr · v(r) =

1

2
nN · v(q = 0) (6)

must then be subtracted from hamiltonian, which amounts to removing the q = 0 Fourier compo-
nent v(0) of the potential; n = N/V above is the particle concentration. The quantum-mechanical
counterpart of (5) is written by means of the field operators

ψ(r) =
1√
V

∑
k

cke
ikr , (7)

where the second-quantization particle operators (of creation and annihilation) satisfy the com-
mutation (anticommutation) relations[

ck, c
+
k′

]
= δkk′ ,

{
ck, c

+
k′

}
= δkk′ , etc , (8)

corresponding to Bose and, respectively, Fermi statistics, such that[
ψ(r), ψ+(r′)

]
= δ(r− r′) ,

{
ψ(r), ψ+(r′)

}
= δ(r− r′) , etc . (9)

The spin label is to be introduced, or tacitly accepted, together with the position r and the
wavevector k. The number of particles is then given by

N =
∫
dr · ψ+(r)ψ(r) =

∑
k

c+k ck , (10)

and the particle density
n(r) =

∑
i

δ(r− ri) (11)

becomes

n(r) =
∫
dri · ψ+(ri)δ(r− ri)ψ(ri) = ψ+(r)ψ(r) =

1

V

∑
q

nqe
iqr , (12)

where the Fourier components
nq =

∑
k

c+k ck+q (13)

are also called the particle-density fluctuations, for q 6= 0. The hamiltonian (5) is then writen as

H =
∫
dr · ψ+

α (r)(p2/2m)ψα(r) +

(14)

+
1

2

∫
drdr′ · ψ+

α (r)ψ+
β (r′)vαβ(r− r′)ψβ(r′)ψα(r) ,

where p = −ih̄∂/∂r and the spin labels have been written explicitly; summations are to be under-
stood over these labels, while the potential may, in general, depend on the spin, with the natural
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symmetry properties; for instance, for one-half spin fermions the potential can be represented as
vαβ = v + αβ · u, where α, β = ±1. Noteworthy, the interaction can also be written as

U =
1

2

∫
drdr′ · vαβ(r− r′)nα(r)nβ(r′)− 1

2
vαα(r = 0)Nα , (15)

where the self-interaction is redundantly introduced; one may agree to ignore it, occasionally, and
use (15) as a more convenient form. Without spin labels the kinetic energy can also be written as

K =
∑
k

εkc
+
k ck , (16)

where εk = h̄2k2/2m, while the interaction can be represented as

U =
1

2V

∑
kk′q

v(q)c+k+qc
+
k′−qck′ck =

1

2V

∑
q

v(q)nqn−q −
1

2
v(r = 0)N , (17)

where the self-interaction has been written again. All this formalism being set up, one can continue
now with the normal fermions (in three dimensions). Similar considerations hold also for bosons,
care being taken of their distinct statistics, and of their condensed ground-state.

Assuming that the perturbation condition (4) is satisfied, i.e. the interaction is weak and short-
range, one may take the average of the hamiltonian given, for instance, by (16) and (17) over the
fermion ground-state, leading to the ground-state energy

E =
∑
kα

εknkα +
1

2V

∑
kk′αβ

[vαβ(0)− vαα(k− k′)δαβ]nkαnk′β , (18)

where nkα is the fermion occupancy, and the explicit summation over the spin labels is restored.
This is the Hartree-Fock approximation, the first interacting term being the Hartree, or direct,
contribution, while the second one is the Fock contribution; obviously, the latter is due to the
exchange effects. The equation of motion can also be written for a one-particle state described by
c+kα, and averaging again over the ground-state one obtains

εHF
kα c

+
kα = εkc

+
kα +

1

V

∑
k′β

[vαβ(0)− vαα(k− k′)δαβ]nk′βc
+
kα , (19)

where εHF
kα may be seen as the single-state energy. The same energy can be obtained by tak-

ing the variation of the average of the hamiltonian (5) over the antisymmetrized wavefunction
Aϕ1(r1)ϕ2(r2)..., where the ϕ-labels denote the one-particle states (this wavefunction is some-
times called a Slater determinant); one obtains

− h̄2

2m
∆ϕkα +

∑
k′β

[(ϕk′β, vαβϕk′β)ϕkα − δαβ (ϕk′α, vααϕkα)ϕk′α]

(20)

= εHF
kα ϕkα ,

which are called the Hartree-Fock equations, and which, obviously, are identical with (19); and no
wonder that the solutions to (20) are plane waves, as long as one starts with orthogonal one-particle
wavefunctions and the hamiltonian is translationally invariant. The single-state energies εHF

kα , and
the corresponding plane waves, do not, obviously, describe independent particles; each of them
depends on the whole rest of one-particle states, and, for this reason, the Hartree-Fock equations
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are said to describe self-consistently an interacting mean-field. In particular, the ground-state
energy (18) is not the sum of the one-particle energies εHF

kα , but, on the contrary, a factor one-half
must be introduced in the interacting contribution, for not counting twice the same state (this
observation is sometimes referred to as Koopman’s ”theorem”). The ground-state energy must be
minimal not only under variations of the one-particle wavefunctions, but also under the variations
of the fermion occupancy, of course, under the constraint of a fixed number N of particles. With
the notation

fαβ(k,k′) = vαβ(0)− vαα(k− k′)δαβ , (21)

this leads to the variation of

E =
∑
kα

εknkα +
1

2V

∑
kk′αβ

fαβ(k,k′)nkαnk′β − µ

(∑
kα

nkα −N

)
, (22)

where µ is the chemical potential, which yields

µ = εk +
1

V

∑
k′β

fαβ(k,k′)nk′β ; (23)

here, k is on the Fermi surface, where the small variations δnkα are localized, and the symmetry
of the f -function has been used. Equation (23) is an extremely important equation; it must be
fulfilled together with the conservation of the number of particles,∑

kα

nkα = N ; (24)

in fact, it defines the Fermi surface, and shows, together with (24), that both the volume and the
shape of the Fermi sea are preserved, i.e. the Fermi sea is preserved, as expected; this statement
is also known as Luttinger’s ”theorem”, and µ = ∂E/∂N for a change in the Fermi distribution
at the Fermi surface is also known as van Hove’s ”theorem”. The full variation of E with respect
to the Fermi sea so determined gives the elementary excitations; this variation is

δE =
∑
kα

εkδnkα +
1

V

∑
kk′αβ

fαβ(k,k′)nkαδnk′β +

(25)

+
1

2V

∑
kk′αβ

fαβ(k,k′)δnkαδnk′β ,

where the important remark is to be made that the nδn-term vanishes; indeed, the δn-variations
are just outside the Fermi sea, the excited states being thus ”orthogonal” to the ground-state.
Therefore,

δE =
∑
kα

εkδnkα +
1

2V

∑
kk′αβ

fαβ(k,k′)δnkαδnk′β , (26)

and the energy of an elementary excitation is

ε̃kα = εk +
1

V

∑
k′β

fαβ(k,k′)δnk′β ; (27)

these are quasi-particles, lying just outside the Fermi sea (and may also be classified as if they
had a one-half spin). This is the basis of Landau’s theory of the Fermi liquid, and the f -function
given by (21) is the scattering amplitude of this theory, to the first approximation. It is worth
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remarking here the harmonic oscillators structure of the quasi-particle energy (26). As known,
while the ordinary sound can not propagate as local density oscillations through the ideal, gas
of quasi-particles with infinite viscosity at zero temperature, the liquid may oscillate as a whole
through its quasi-particles, which now support a quasi-classical dynamics; in the sense that their
energy, as described by (27), depends now both on momentum and position, the latter through
the variations in the Fermi distribution; the time changes in the δn-coordinates are described by
the energies ε̃kα, which play now the role of the hamiltonian either in the Poisson brackets, leading
thus to the Boltzmann equation, or in the quantum commutators, as for a quantum dynamics;
yielding in either case, beside the particle-hole excitations, the collective oscilations of the zero
sound, which is the quantum guise the ordinary sound takes in Fermi liquids at zero temperature.
In principle, these modes add their contribution to energy (and to the wavefunction), which,
however, is insignificant in this case.

For strong, or long-range, interactions the validity condition for the perturbation scheme expressed
by (4) may not be fulfilled. While the former case is rather unphysical, the typical example
for the latter is provided by the Coulomb interacting electrons. The perturbation scheme may
not be valid in terms of the original coordinates of the individual particles, but the many-body
systems possess an additional type of coordinates, called collective coordinates, which describe the
variations of particle density, and the motion of the ensemble as a whole. These collective modes,
which corresponds to the zero sound discussed above, and which in the case of the electrons are
called plasmons, screen the long-range interaction, whose strong effects are spent on the plasmon
zero-point oscillations. The remaining screened potential is of a short range, and the perturbation
scheme may be valid for it. This particular effect is contained in what is called the ”random
phase approximation”, and, obviously, it is not a perturbation effect; though it can be obtained
perturbationally, by suming up a sub-series of perturbations, which, however, is not formally
convergent. Properly, the ”random phase approximation” means the reduction of sums like∑

i

eiqri , (28)

where the summation is over all the randomly distributed particles, to∑
i

eiqri ∼= Nδq0 ; (29)

as such, the ”approximation” is valid for high concentrations, affects the long-range components
of the motion, and has the aspect of a mean-field (to be self-consistently determined), as it
does not depend anymore on the particle coordinates. A derivation of the static random phase
approximation for fermions can readily be obtained as follows. Suppose that when the interaction
is switched on the particle density changes from n0 to n by the amount δn; the corresponding
change in the kinetic energy is

δK =
∫
dr · µδn , (30)

where µ is the chemical potential. According to the random phase approximation this change may
be written as

µδnα = (3/2)nαδεα , (31)

since µ ∼ ε ∼ k2
F and n ∼ k3

F ; noteworthy, nα in (31) is the concentration, and, though not very
relevant, the spin labels are introduced. The change in the kinetic energy may be thought of as
arising from the variation −ϕ of a potential energy (mean-field),

δK =
∫
dr · µδn = −ϕ =

∫
dr · n0αδεα , (32)
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where now n0α includes the density variations, and spin summations are understood. The potential
ϕ spends interaction, and the total potential energy

ϕ+ U = ϕ+
1

2

∫
drdr′ · vαβ(r− r′)n0α(r)n0β(r′) (33)

should be minimized (the form (15) is used for interaction, ignoring the self-interaction). The
variation of (33) leads to

−δεα +
∫
dr′ · vαβ(r− r′)n0β(r′) = 0 ; (34)

obviously, the total energy K + δK + ϕ+ U = K + U is left unchanged; using (31) one obtains

− 2µ

3nα

δnα +
∫
dr′ · vαβ(r− r′)n0β(r′) = 0 , (35)

or

− 2µ

3nα

δnα +
∫
dr′ · vαβ(r− r′) [nβ(r′)− δnβ(r′)] = 0 . (36)

The two equations above are easily solved for δnα by Fourier transforms; though not very realistic,
one may assume, for the sake of some generality, vαβ = v+αβ ·u, where α, β = ±1, as for one-half
spin fermions; then one obtains

δnqα =
3nα

2µ
vαβ(q)n0qβ =

3nα

2µ
ṽαβ(q)nqβ , (37)

where

ṽ(q) =
v(q)

1 + 3nv(q)/2µ
(38)

and

ũ(q) =
u(q)

1 + 3nu(q)/2µ
. (39)

Using (37) the interaction given by (15) and (17) can be written approximately as

U =
1

2

∫
drdr′ · vαβ(r− r′)n0α(r)n0β(r′) ∼=

(40)

∼=
1

2

∫
drdr′ · ṽαβ(r− r′)nα(r)nβ(r′) ,

for short wavelengths (up to the self-interaction), and the Fermi liquid theory could now be started
as before, in principle, with a f -function given by

fαβ(k,k′) = −ṽαα(k− k′)δαβ ; (41)

the direct contributions are cancelled by the stabilizing background in this case, and the bare
potential is replaced by the screened (or dressed) one; remarkably enough is the fact that the
dressing factor nv(q)/µ is, practically, the same as the parameter v/(h̄2/ma2) by means of which
the validity of the perturbation theory is assessed by (4); this is why the potential dressing is
irrelevant for weak short-range interaction; while for strong, long-range interaction the validity
of the perturbation theory may remain, in principle, to be checked for the dressed interaction;
for Coulomb interacting electrons it still does not hold. However, this is only part of the story;
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because, the particle-hole excitations and the collective modes can obviously be obtained from the
dynamics of δnkα in (26) and (27) with an f -function

fαβ(k,k′) = vαβ(q)− ṽαα(k− k′)δαβ , q = k− k′ → 0 , (42)

where the main part is played now by the direct bare interaction; indeed, the long-range collective
modes are not screened by the background (but they do screen the individual motion of the
particles). In other words, when the collective motion of the ensemble is pursued the first form
of the interaction U in (40), with the bare potential, is valid, and not the second one, since the
density variations involve now a local non-equilibrium, as for a collective motion of the ensemble
as a whole. The zero-point contribution of these collective modes is to be added to the ground-
state energy (and to the wavefunction), a competition appearing thereby between the long-range
oscillations of the collective modes and the short-range contribution of the individual motion of the
particles; this competition may usually be resolved, in principle, by minimizing the ground-state
energy with respect to this splitting of the total number of the degrees of freedom.

For Coulomb interacting electrons u = 0 an f -function of the form (41) and (42) could be written
as

fαβ(k,k′) = − 4πe2

|k− k′|2 + q2
TF

δαβ , (43)

and

fαβ(k,k′) =
4πe2

q2
− 4πe2

|k− k′|2 + q2
TF

δαβ , q = k− k′ → 0 , (44)

where

qTF =
(
4mkF e

2/πh̄2
)1/2

(45)

as given by (38) (for a spherical Fermi surface) is the Thomas-Fermi wavevector (as a matter of fact,
equation (36) is equivalent with the Poisson equation and with the linearized form of theThomas-
Fermi equation). The screened Coulomb interaction is v(r) = e2 exp(−qTF r)/r, and one can see
that the long-range part of the Coulomb interaction is cut off, while the short-range part is practi-
cally unaffected, extending over a distance aTF ∼ 1/qTF ∼ (aHa)

1/2, where aH = h̄2/me2 = 0.53Å
is the Bohr radius (short-range oscillations of wavelength ∼ a/2, called Friedel’s oscillations, may
appear for short-range corrections to the screened potential). As one can see, for instance from
(38), the Coulomb potential is reduced in the long-range limit to ṽ ∼ µ/n ∼ µa3, and the validity
condition (4) for the perturbation theory is actually not satisfied, as expected; the formal pertur-
bation parameter would be q2

TF/k
2
F ∼ a/aH , and, as known, one finds again that, formally, the

electrons behave the freer the denser they are. One can say that the Coulomb interacting electrons
are indeed strongly coupled. The random phase approximation does, in fact, restore the short-
range variations of a uniform density, indicating the actual equilibrium picture of the electrons
surrounded by a cloud of positive background, which screens out the bare Coulomb interaction; as
a matter of fact the dielectric function is given by ε = v(q)/ṽ(q) = 1 + (3n/2µ)v(q) = 1 + q2

TF/q
2

(and a dynamic dielectric function can be derived, depending on the excitation frequency too,
by using a similar reasoning; incidentally, one may remark that for a classical plasma the factor
3/2 does not appear anymore in the screening formulas, while µ is replaced by the temperature
T , leading thus to the Debye-Huckel formula). What is indeed remarkable is the magnitude of

the Thomas-Fermi wavelength aTF ∼ (aHa)
1/2, which is shorter than the inter-particle separation

(and, of course, longer than the Bohr radius). As a general remark, one can see that dressing up
the interaction by static random phase approximation is practically not of much avail in treating
the interaction effects; a dynamic random phase approximation would, however, do better.
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The dynamics of the Coulomb interacting electrons has however an essential element, namely the
plasmons. Suppose that the particles are slightly displaced by u(r), such that ri → ri +u(ri); the
change in density can be written as

δn = −ndivu , (46)

where n is the electrons concentration. A decoupling can be carried out, by assuming that δn
contains the long-range degrees of freedom, while the remaining density n(r) corresponds to the
short-range degres of freedom. Indeed, the interaction (15) can now be written as

U =
1

2

∫
drdr′ · v(r− r′)δn(r)δn(r′) +

1

2

∫
drdr′ · v(r− r′)n(r)n(r′) , (47)

(self-interaction omitted for the moment), and with the Fourier transform

u(r) =
1

V

∑
q

uqe
iqr , δnq = −inquq , (48)

the first term in the interaction above becomes

Ulr =
1

2V

∑
q

v(q)δnqδn−q =
1

2V

∑
q

v(q)n2q2uqu−q , (49)

where only the longitudinal components of the displacement field u have been retained (and the
q = 0-component is skipped from the summation). A similar decomposition can be performed for
the kinetic part of the hamiltonian, which becomes

K +
1

2V

∑
q

mn
•
uq

•
u−q , (50)

where the coupling between particles and the field u is neglected for the moment. Now, it is
easy to see that the long-range part associated with the displacement field u gives the plasma
oscillations,

ωp =
(
4πne2/m

)1/2
; (51)

the dispersion relation (51) extends approximately up to some wavevector∼ h̄ωp/h̄vF ∼ (a/aH)1/2kF ,
at most, where the plasmons start to decay on electron-hole excitations (or create electron-hole
excitations); to this extent one may neglect the electron-plasmon coupling. The energy of the
zero-point plasmon oscillations is given by

Elr =
∑
q

h̄ωp/2−
Ne2

π
qc =

V

12π2
h̄ωpq

3
c −

Ne2

π
qc , (52)

where the self-interaction energy in (15) has been reintroduced; the cut-off wavevector qc is there-
fore given by

qc ∼ 1/a3/4a
1/4
H , (53)

and, quite remarkably, it is shorter than qTF , though longer than kF in the low-density limit:

qc ∼ qTF (aH/a)
1/4 ∼ kF (a/aH)1/4 ; (54)

actually, for metallic densities qc ∼ kF . Therefore, the electron-plasmon decoupling is realized,
the electron-electron (very short-range) interaction is largely ineffective, the ground-state energy
is lowered by

Elr(qc) = −2

3

Ne2

π
qc = −2

3

Ne2

π
(mωp/h̄)

1/2 , (55)
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and the ensemble may be termed a genuine electron liquid; the remaining short-range electron in-
teraction leads to a weakly-coupled Fermi liquid, whose f -function is fαβ(k,k′) = −4πe2/ |k− k′|2 δαβ

for a ”hard” cut-off |k− k′| > qc, which, however, has small effects; the corresponding effective
mass of the electrons is practically left unchanged, their life-time effects are small, and a certain,
small uncertainty in the ground-state energy is brought, corersponding to the Hartree-Fock con-
tribution of this interaction; the spin susceptibility is likewise slightly affected. For very large
inter-particle separation the Coulomb potential may realize its minimum value for periodic struc-
tures, and the liquid may become a solid, which is called a Wigner solid. A similar theory can
formally be attempted for weak, short-range interactions, but it turns out immediately to be in-
consistent, as expected. Therefore, the long-range electron degrees of freedom are taken in the
oscillating plasmons, precisely those which screen out the bare Coulomb interaction (and which
are in fact associated with the oscillations of the macroscopic electric field of polarization; ac-
cording to (46) this field is proportional to the displacement u); while the remaining short-range
degrees of freedom are left for the motion of the individual electrons (associated with the mi-
croscopic, rapidly oscillating fields); the latter implies such strong excitation processes that they
are much unfavoured, and this remaining part of the motion, though formally may be described
perturbationally, involves practically small corrections to the free electron picture.
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