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Abstract

It is shown that the ”bosonization” of the fermions in two and three dimensions proposed
by Castro Neto and Fradkin (see, for instance, A. H. Castro Neto and Eduardo Fradkin,
Phys. Rev. Lett. 72 1393 (1994), Phys. Rev. 49 10 877 (1994)) is inconsistent. It is also
shown that the bosonic ”coherent” state introduced by these authors is not a coherent state,
and the corresponding classical action is chosen arbitrarily. In addition, the single-fermion
results obtained by Castro Neto and Fradkin in Phys. Rev. 51 4084 (1995) by using this
method depend on the momentum-transfer cut-off, and, consequently, are unphysical.

Few years ago, Castro Neto and Fradkin[1],[2] (see also Ref.3) noticed that the Fourier transforms

ρq(k) = c+
k−q/2ck+q/2 (1)

of the fermion-density operator satisfy boson-like commutation relations

〈FS | [ρq(k), ρ−q′(k
′)] | FS〉 = qvkδ(µ− εk)δkk′δqq′ (2)

in the limit q → 0, when averaged over the Fermi sea | FS〉; here εk denotes the one-fermion
energy, vk = ∂εk/∂k is the corresponding velocity (Planck’s constant is set equal to one), µ
denotes the chemical potential, and the spin labels are omitted for simplicity. This is an old
observation, and it was systematically exploited, probably for the first time, by Sawada[4] in 1957.
Based on this observation the above authors[1],[2] attempted to ”bosonize” the fermions in two
and three dimensions. To this end, normal-ordered operators

aq(k) = ρq(k)θ(qvk) + ρ−q(k)θ(−qvk) (3)

are introduced, where θ is the step function, such as aq(k) | FS〉 = 0, and boson-like commutation
relations [

aq(k), a+
q′(k

′)
]

= |qvk| δ(µ− εk)δkk′(δqq′ + δq,−q′) (4)

are adopted for these operators, as suggested by (2). However, the boson-like commutation rela-
tions (4) are not consistent with the definition given in (1) and (3), since

a+2
q (k) = 0 (5)

for q 6= 0. Indeed, one can check easily that

ρ2
q(k) = c+

k−q/2ck+q/2c
+
k−q/2ck+q/2 = n(k)δq,0 , (6)
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where n(k) = c+
k ck is the fermion occupation number. Therefore, the ”bosonic” operators

aq(k), a+
q (k) are in fact ”fermionic” operators, operating only on two states, | FS〉 and | qk〉 =

a+
q (k) | FS〉, and the ”bosonization” is actually a ”fermionization”. Since aq(k) = a−q(k), one

may restrict oneself to qvk > 0, and the boson-like commutation relations (4) may be used (ap-
proximately) for k 6= k′ or q 6= q′, but not for k = k′,q = q′, where the a-operators satisfy

fermion-like commutation relations
{
aq(k), a+

q (k)
}

= 1 (and a+2
q (k) = 0). This would suffice

to say that the attempt made in Refs.1 and 2 at ”bosonizing” the fermions in two and three
dimensions is inconsistent.

Overlooking the contradiction implied by (4) and (5) Castro Neto and Fradkin[1],[2] proceed to
constructing a ”coherent” state defined by

| uq(k)〉 = exp

[
vk

2 |qvk|
uq(k)a+

q (k)

]
| FS〉 ; (7)

in view of (5) this can also be written in various other forms, as, for instance,

| uq(k)〉 =

[
1 +

vk

2 |qvk|
uq(k)a+

q (k)

]
| FS〉 ; (8)

obviously, the scalar products are different for these states. Restricting oneself to the low-energy
states defined by the a, a+-operators, one may establish the (over)completeness of both (7) and
(8) with a gaussian measure; however, the path-integral lagrangean is different, and in fact it is
not unique. Indeed, from (7) one obtains the lagrangean density

L =
∑
kq

v2
kδ(µ− εk)

2 |qvk|
· iu∗q(k)

∂

∂t
uq(k)−

(9)

−〈{uq(k)} |H| {uq(k)}〉/〈{uq(k)} || {uq(k)}〉 ,

where H denotes the hamiltonian of the system, while, using (8), general factors of the form[
1 +

v2
k

|qvk|
δ(µ− εk)

∣∣∣u+
q (k)

∣∣∣2]−1

(10)

would affect the terms in the lagrangean density (9); they arise from the fact that commutators
of the type [eua, a+] = uCeua differ from commutators like [1 + ua, a+] = uC, where C stands
for the commutator [a, a+], [a, a+] = C. Of course, such inconsistencies originate in the fact
that ”bosonic” coherent states of the form given by (7) can not be constructed with ”fermionic”
operators. One may conclude, therefore, that (7) (or its equivalent form (8)) is not a coherent
state, and, in this respect, the choice (9) made by Castro Neto and Fradkin[1],[2] for the classical
lagrangean appears to be arbitrary.

The situation is different in one dimension, where the bosonization is a genuine one. Indeed, as it
is well-known, boson-like operators can be defined there by

ρ1,2q =
∑

k∼±kF

c+
k−q/2ck+q/2 , (11)

where the summation over k is restricted to a small range around the two ±kF -Fermi ”points”,
kF being the Fermi momentum; it is easy to see that, due to the summation over k,

(b+
1,2q

)n | FS〉 6= 0 (12)
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for any n, where
b1,2q = ρ1,2q(k)θ(±qkF ) + ρ1,2−q(k)θ(∓qkF ) . (13)

One may use boson-like commutation relations for these operators, similar with those given by
(2), by averaging their commutators over the Fermi sea, and (12) gives then boson states for
any integer n. One may conclude that this is indeed a genuine bosonization. Moreover, the
low-energy excitations of the one-dimensional fermions can be described entirely in terms of the
b1,2q-boson operators;[5] as often emphasized, this is the origin of the non-Fermi liquid behaviour
of the fermions in one dimension. In contrast with the one dimensional case, a construction similar
to (11) in two- or three-dimensions would imply the continuum of particle-hole excitations, as a
consequence of the motion along the Fermi surface; such a construction requires certain restrictions
which, however, lead to arbitrary, unphysical results.

Indeed, drawing on the one-dimensional case Castro Neto and Fradkin[3] employ also boson-like
operators defined by ∑

k

ΦΛ (|k− kF |) aq(k) , (14)

where aq(k) is given by (3) and ΦΛ (|k− kF |) is a ”smearing” function with the support within
a narrow range Λ around the origin (eq.(2.5) in Ref.3); Λ plays here the role of a cut-off on the
fermion states (which may be called a ”bandwidth” cut-off), these states being thereby restricted
to a narrow region around each value of the Fermi momentum in a given set of values. In other
words, the Fermi surface is divided in a number of ”boxes”, ”sectors”, or ”patches”, of various
shapes (spheres, pill boxes, etc), centered around a discrete set of kF -values, and it is assumed that
the Fermi surface may be ”rectified” within each of these boxes, i.e. it is assumed that it may be
approximated by planes (or lines in two dimensions); this assumption is needed in order to express
the kinetic energy of the fermions in terms of the operators given by (14), and it may be fulfilled
providing Λ � kF . Further on, the operators given by (14) are not, in general, disentangled
from each other, due to the ”proximity” effects between adjacent boxes; in order to achieve this
decoupling, and transform (14) in boson operators, the momentum transfer q is required to be
much smaller that the size of the boxes, q � Λ; obviously, this means another cut-off, say Λ′,
this time on the range of the interaction (which transfers the momentum q), and the condition of
validity for the above construction would be q < Λ′ � Λ � kF . Such a construction is used in a
number of recent publications,[6] in slightly different versions, but the above assumption of the two
cut-offs is a common element. It may be useful, to a somewhat extent, for describing the collective
modes of the interacting fermions, but it leads to unphysical results for single-fermion properties, as
expected. This unphysical behaviour originates in the dependence of the single-fermion propagator
on the cut-offs; for instance, leaving aside the bandwidth cut-off Λ (which may be absorbed in the
definition of the boson operators and the coupling constants), the momentum-transfer cut-off Λ′

appears in the single-fermion propagator. Such a cut-off dependence is a well-known matter too,
and it was pointed out long ago in connection with the relation between the bosonized fermions
and the original fermions in one dimension.[7]

For instance, leaving aside a rapidly oscillating term, it is claimed in Ref.3 that the single-fermion
propagator in two dimensions requires the estimation of the integral∫

dq ·
(
qN/q2

T

)
, (15)

where qN,T are the components of the wavector q normal, and, respectively, tangential, to the
Fermi ”circle” (and dq = dqT dqN); Castro Neto and Fradkin[3] cut the qN -integration by a 1/Λ-
exponential, ∫

dqN · qN →
∫

dqN · qNe−qN/Λ = Λ2 (16)
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(eq. (8.10) in Ref.3), while the divergent qT -integral is replaced by∫
dqT ·

(
1/q2

T

)
→ N(0)vF /Λ2 (17)

(eq. (8.9) in Ref.3), where N(0) is the density of states at the Fermi surface, and vF is the
Fermi velocity; these manipulations are done in order to enforce the idea that the single-fermion
propagator, and the quasi-particle residue, would not depend on the cut-off choice (indeed, by
using (16) and (17) one can see that (15) does not depend on Λ ). Unfortunately, the above
estimations are incorrect, and the single-fermion properties depend on the momentum-transfer
cut-off Λ′. Indeed, first one should notice that this latter cut-off should be used in the qN -
integration, according to the construction of the ”boxes” on the Fermi surface (however, if the
Λ cut-off is absorbed in the boson operators and the coupling constants, then one may agree to
denote the remaining interaction cut-off Λ′ by Λ). Secondly, leaving aside the infrared divergence
in the qT -integral (17), the density of states N(0) appearing in (17) must be replaced by a local
density of states, i.e.

∫
dqT = Λ′, for instance, and the result depends on the integration cut-

off. A similar result is obtained by performing the integral in (17) with an infrared cut-off, i.e.∫
dqT · (1/q2

T ) = 1/Λ′, and again the result depends on cut-off. In this connection, the statement
made in Ref.3 that one may ”substitute” the local density of states

NΛ(kF ) =
1

V

∑
k

|ΦΛ(|k− kF |)|2 δ(µ− εk) (18)

”by its natural average which is the total density of states N(0),

N(0) =
1

V

∑
k

δ(µ− εk) (19)

divided by the solid angle of the Fermi surface Sd =
∫

dΩ” (eqs. (2.10) and (2.11) on p. 4087 of
Ref.3) is incorrect. According to the definitions used by these authors, a direct computation gives
NΛ(kF ) = (N(0)/Sd) · (Λ/kF )d−1 (for spherical Fermi surfaces), for instance, where d denotes the
number of dimensions.

In conclusion, one may say that the fermion ”bosonization” attempted in Refs.1-3 is inconsistent,
and leads to arbitrary and unphysical results.
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