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Abstract

The critical condition of fission of a liquid droplet is reexamined, by estimating the surface
energy and the electrostatic energy in the presence of deformations.

The fissionability criterion of a liquid droplet is recently brought again in discussion,[1] with the
advent of metallic clusters.[2],[3] Since a computational error in the original paper on the theory
of nuclear fission[4] is sometimes perpetuated, it is worth examining again the basic features of
the elementary theory of the liquid drop model. This may even be more timely, as the model
might bear some relevance on another problem, namely that of the charge separation in a thunder
cloud.

A spherical liquid droplet of radius R0 has a surface energy ES = 4πσR2
0, where σ is the surface

tension, and, when uniformly electrified to a charge q, it has also an electrostatic (Coulomb) energy
EC = 2

5
q2/R0. The simplest deformation the droplet may acquire is an axially symmetric one, in

which case its shape is given by ϕ(x2 + y2, z2) = const, where ϕ is the potential energy at the
(x, y, z)-point of the surface; and the simplest form of ϕ is ϕ = const(x2 + y2) + const · z2, which
means that the droplet is an ellipsoid of equation

γ2(x2 + y2) + δ2z2 = R2
0 . (1)

The parameters γ and δ are chosen such as to keep constant the volume of the droplet (as for an
incompressible one), i.e. γ2δ = 1, which allows the parametrization

γ = 1 + β ,
δ = 1− 2β + 3β2 ,

(2)

up to the second order in the deformation parameter β. The elongated (prolate) ellipsoids cor-
respond to β > 0, while the oblate ones correspond to β < 0. We may introduce the spherical
coordinates ξ = γx = R0 sin θ cos ϕ, η = γy = R0 sin θ sin ϕ, ζ = δz = R0 cos θ, and get the
square radius

R2 = x2 + y2 + z2 = R2
0

[
1 + 2β

(
3 cos2 θ − 1

)
+ 3β2

(
cos2 θ + 1

)]
, (3)

which corresponds to

R = R0

[
1 + β

(
3 cos2 θ − 1

)
+

1

2
β2

(
2 + 9 cos2 θ − 9 cos4 θ

)]
, (4)

within the second-order approximation in powers of β. The area of the ellipsoidal surface is given
by

S =
∫

R sin θ · dϕ
√

R2dθ2 + R′2dθ2 , (5)
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whence, by using (3) and (4), we get

S = 4πR2
0

(
1 +

32

5
β2

)
. (6)

The surface energy is therefore

ES = 4πσR2
0

(
1 +

32

5
β2

)
. (7)

This result is wrong in Ref.4 where a factor of 8 is missing in the β2-term. The exact area reads

S = 2πR2
0

1

γ2

ε +
ln

(
ε +

√
ε2 − 1

)
√

ε2 − 1

 (8)

for ε = γ/δ (> 1), whose second-order expansion is (6).
The Coulomb energy of the deformed droplet is given by

EC =
1

2
ρ2

∫
dv1dv

{
1

γ2

[
(ξ1 − ξ)2 + (η1 − η)2

]
+

1

δ2
(ζ1 − ζ)2

}−1/2

, (9)

where ρ is the (constant) density of charge, and a second-order expansion in powers of β reads

EC =
1

2
ρ2

[
(1 + β) E0 − 3β

(
1 +

7

2
β

)
E1 +

27

2
β2E2

]
, (10)

where
E0 =

∫
dv1dv 1

d
,

E1 =
∫

dv1dv (ζ1−ζ)2

d3 ,

E2 =
∫

dv1dv (ζ1−ζ)4

d5 ,

(11)

and d =
[
(ξ1 − ξ)2 + (η1 − η)2 + (ζ1 − ζ)2

]1/2
. The integral over r= (ξ, η, ζ) (dv = dr) in E0 does

not depend on the direction of r1 = (ξ1, η1, ζ1), so that we get easily E0 = 2
15

(4π)2 R5
0. For E1,2 we

perform first a rotation of angle ϕ1 − π/2 around the third axis, and thereafter another rotation
of angle −θ1 around the first axis, in order to bring the third axis along the direction of r1. With
the new coordinates we have

ξ = ξ
′
sin ϕ1 + (η

′
cos θ1 + ζ

′
sin θ1) cos ϕ1 ,

η = −ξ
′
cos ϕ1 + (η

′
cos θ1 + ζ

′
sin θ1) sin ϕ1 ,

ζ = ζ
′
cos θ1 ,

(12)

and

E1 =
∫

dv1dv
′ 1

d3

[(
r1 − ζ

′)2
cos2 θ1 + η

′2 sin2 θ1 + 2
(
r1 − ζ

′)
η
′
sin θ1 cos θ1

]
, (13)

where d = (r2
1 + r2 − 2r1r cos Θ)

1/2
, Θ being the angle between r and r1. The integration in (13)

is now easily performed, leading to E1 = 1
3
E0. Similarly, we get E2 = 1

5
E0, so trhat the Coulomb

energy is

EC =
3

5

q2

R0

(
1− 4

5
β2

)
. (14)

If one follows the fissionability of the droplet in the ”deformed channel” one finds, from (7)
and (14), the critical condition q2 > 40σV , where V is the volume of the droplet. However, a
”spherical explosion” described by R0 → R0 (1 + α) (without conserving the volume) leads to



J. Theor. Phys. 3

the critical condition q2 > 10σV , which is easier to meet than the former; which suggests that
the fission proceeds by a ”spherical” blow-up. Of course, if the ground-state of the droplet, by
various reasons, is deformed, the critical condition of fissionability should be obtained from that
”deformation channel”, and, for example, the former condition given above will hold (q2 > 40σV )
for an ”elliptical” ground-state of the droplet. It is also worth remarking that the elliptical shape
given by (4) contains a certain superposition of the Legendre polynomials P2(cos θ) and P4(cos θ);
a general expansion in Legendre polynomials would describe the motion of the surface of the
droplet. For a more general deformation of the ground-state one may use the same method as that
indicated above for estimating the surface and the electrostatic energies.

It is rather widely agreed [5] that a process of charge separation may occur in the thunder
clouds, which would explain the thunders, the lightnings, and the charging of the earth’s sur-
face with negative electricity. It is likely that this separation is performed by supercooled water
droplets, in the region of temperature ∼ −12 ◦C (which corresponds typically to a height of
∼ 8 Km). In the electric field E of the earth ( E ∼ 100 V/m ∼ 3 · 10−3 ues) a water droplet
of radius R0 may acquire, due to its polarization, an electric charge q ∼ εER2

0, at most, where
ε ∼ 80 is the dielectric constant of water. The origin of this charge, though controversial, may be
that of negative ions, or electrons, produced by the ionization of the air. The estimation of the
Coulomb energy of a droplet whose surface is uniformly charged to q proceeds in the same way as
that indicated above; we get for a deformed droplet

EC =
q2

2RO

(
1− 4

5
β2

)
, (15)

whence, by the same line of reasoning as above, the critical condition of fissionability (which is
again that of a ”spherical channel”) reads

q2 > 12σV . (16)

By using the estimation of q given above we get a critical radius R0 ∼ σ/ε2E2 ∼ 104 cm (σ ∼
70 dyn/cm), which is too large, although the electrical field may acquire much higher values at the
microscopic level of an ionized gas; or another mechanism may work for electrifying the droplets.
We note that for falling down with a velocity of ∼ 1 cm/s under the Stokes’ force (air viscosity
being η ∼ 10−4 g/cm · s at 20 ◦C) a droplet must have a radius ∼ 1 mm.

If this mechanism would work, a negative charge is accumulated at the bottom of the cloud,
which will sharply increase the electric field; which, in turn, will accelerate the falling of the
droplets by the dipolar attraction, reducing thereby their chance of gaining charges. Consequently,
larger droplets will be stable and they will precipitate. (Recall that for falling with higher velocities

v the resistance force of the air is given by k · ρv2

2
S, where ρ is the air density, S is the cross section

of the droplet, and the numerical coefficient k ∼= 0.24 for a sphere; which would require a droplet
radius R0 ∼ 10−3 cm for free sustenance.). In such a scenario the precipitation, i.e. the rain, is a
consequence of the electrification of the cloud.
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