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Abstract

By using the ”off-centre” diffusion theory it is shown that the average radius of the
droplets in the precursor regime of the finite volume fraction and of dominance of the large
droplets obeys a temporal power law with the exponent 1/6 (R ∼ t1/6). Within the same
theory the well-known exponent 1/3 is obtained in the asymptotic regime of an infinite
time and of a vanishing volume fraction. Transient regimes are characterized by temporal
exponents in-between these two limiting values.

It is widely agreed that, under certain conditions, fluctuations in over-saturated binary solutions
may lead to a phase separation.[1] The minority phase consists of small, approximately spherical
droplets, of various sizes which evolve in time. It has been noticed that the average radius of
these droplets increases in time, the large droplets growing at the expense of the small ones, which
perish. This phenomenon is known as ”Ostwald Ripening”, and much attention has been paid
to the temporal law governing the evolution of the average radius. The basic explanation of the
phenomenon consists in the large curvature of the small droplets, where the concentration of the
solute particles is therefore higher, thus leading to a net particles flow from the small,shrinking
droplets to the large, growing ones. It has been shown[2] that in the asymptotic limits of an infinite
time and of a vanishing volume fraction the average radius R obeys a 1/3-power law, R ∼ t1/3,
which is quasi-universal. Many experiments, both physical and numerical, give support to this
power law,[3] while many others disagree.[4] Particularly controversial results have recently been
presented and commented in two-dimensional systems.[5, 6] It seems that the asymptotic regime
of the 1/3-law is not always reached experimentally, and the precursor stage of a finite volume
fraction deserves a special attention.[7, 8] In this regime the solute particles are trasferred directly
to a large droplet from the small droplets surrounding it at close ranges. We apply to this process
an ”off-centre” diffusion theory developed recently,[9, 10] with the result that the average radius
goes like t1/6 for the late stages of the direct-transfer regime where large droplets dominate. In
the limits of an infinite time and of a vanishing volume fraction, where the growing of a large
droplet proceeds from solution, we rederive the exponent 1/3 of the temporal law by employing
the same theory of ”off-centre” diffusion. We argue that the same exponents apply also to the
two-dimensional case. Transient regimes appear in-between the two limiting processes mentioned
above, with various temporal exponents ranging from 1/6 through 1/3.

Suppose that we have a shrinking droplet placed at x and a growing one placed at x+ ξ. We shall
focus on the net flow of solute particles from the former droplet to the latter. According to the
”off-centre” diffusion theory[9, 10] the particles may jump (on atomic scale) among N sites placed
on the droplet surface and labelled by i = 1...N . We denote the frequency of these ”on-site”
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jumps by p0. At the same time the particles may also perform ”inter-site” jumps with a frquency
p (p� p0) along the x-axis over the distance ξ. We denote the particle concentration at each site
i by ni(x, t), and, assuming that these concentrations vary slowly in time, we may write

∂

∂t
ni(x, t) = p0

N∑
j=1

[nj(x, t)− ni(x, t)] + p
N∑

j=1

[nj(x + ξ, t) + nj(x− ξ, t)− 2ni(x, t)] . (1)

Next, we assume that the concentration functions ni vary slowly in space too, so that (1) becomes

∂ni

∂t
= (p0 + 2p) n−N (p0 + 2p) ni + pξ2∂2n

∂x2
, (2)

where we have denoted

n(x, t) =
N∑

i=1

ni(x, t) . (3)

By Fourier transforming (2) we obtain immediately the frequency

ω = Npξ2q2 (4)

of the q-th diffusion mode, and the total number of particles

n(x, t) =
1

2
√

πNpξ2t
exp

(
− x2

4Npξ2t

)
, (5)

where n(x, 0) = δ(x). We note that (5) is the well-known solution of the diffusion equation in
one-dimension (coordinate x), and that the ”on-site” jumps of the particles on the droplet surface
account for the diffusion process along the remaining two local coordinates y and z. We note
also that the ”geometrical factor” N appears in the effective diffusion coefficient in (5) above, as
discussed recently in the ”off-centre’ diffusion theory.[10]

Further on, we may assume that the solute particles involved in this diffusion process are produced
at the shrinking droplet with a dissociation rate which is constant in time. This rate may depend,
of course, on the nature of the solute particles and, what is probably more important, it depends
on temperature T .[11] We denote it by K(T ), therefore, and the total number of particles at x
and t can be written as

N(x, t) =
∫ t

0
dτ ·K(T ) · n(x, t− τ) = K(T )

∫ t

0
dτ · n(x, τ) . (6)

For long times the concentration function n(x, t) varies slowly, in agreement with the assumptions
of the present theory, so that we may write (6) approximately as

N(x, t) ∼= K(T ) · t · n(x, t) =
K(T )

2
√

πNpξ2

√
t exp

(
− x2

4Npξ2t

)
. (7)

Indeed, for large values of time n(x, t) given by (5) is, up to irrelevant factors, n(t) ∼ 1/
√

t, and
the integral in (6) may be written as∫ t

0
dτ · n(x, τ) ∼

√
t = t · n(x, t) , (8)

whence (7).
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Part of the particles released by the shrinking droplet (placed at x = 0) in this diffusion process
condense at x = ξ − R on the surface of the growing droplet, and quickly distribute themselves
uniformly over the whole area of the droplet by ”on-site” jumps. We may assume therefore that
N in (7) is proportional to the area of the droplet, N ∼= R2/a2, where a is an atomic length scale.
Using (7) we can write now the variation of the droplet radius from R0 to R as being given by

ρ · 4π
3

(
R3 −R3

0

)
∼=

1

2
aK(T )

∫ R

R0

dR · 1√
πpξ2

·
√

t

R
· exp

(
−(ξ −R)2a2

4R2pξ2t

)
, (9)

where ρ denotes the particle density of the droplet (ρ ∼ 1/a3). We can take in (9) ξ ∼= R since the
volume fraction is finite and the two droplets are close to each other. In the limit of long times,
where the large droplets dominate, we get straightforwardly from (9)

R3 ∼=
3K(T )

8πρ
√

πp
·
√

t , (10)

where R0 has been identified with a. From (10) we obtain that the average radius of the droplets
increases in time as R ∼ t1/6. Although the above calculations have been done for two droplets it
is easy to see that the result holds also for several shrinking droplets surrounding a large, growing
one.

The result derived above refers to the direct transfer mechanism between neighbouring droplets,
where the volume fraction is finite and the large droplets dominate. This is a precursor regime,
which, in principle at least, is followed by the asymptotic regime of vanishing volume fraction. This
latter case is an ideal one, where there is only one large droplet growing directly from solution.[2]
Therefore it may be described by taking in the exponential in (9) ξ → ∞, replacing ξ in the
denominator by R, and letting R go to infinity.. We obtain

ρ · 4π
3

(
R3 −R3

0

)
∼=

aK(T )

2
√

πp

∫ R

R0

dR ·
√

t

R2
· exp

(
− a2

4R2pt

)
∼= K(T ) · t , (11)

i.e. the well-known power law R ∼ t1/3 for the average radius.

We can apply the same considerations to the two-dimensional systems. For a strictly two-
dimensional case the only change in (7) and (9) comes from N ∼= R/a, which leads to a tem-
poral exponent 1/4 in the precursor regime and 1/2 in the asymptotic one. However, the actual
flattened islands of the minority phase in two dimensions have the area ∼ R · l, where l is their
thickness, and minimization of energy at equilibrium requires l ∼ R, so that the number of sites
N is actually again proportional to R2, as for quasi-spherical droplets in three-dimensions; we
are led therefore to the same temporal exponents 1/6 and 1/3. We note in this connection that
recent experimental data for thin films of poly-styrene-b-butylmethacrylate deposited on silicon
wafers[12] indicate a temporal exponent practically equal to 1/6.

Finally, by comparing (9) for ξ ∼= R and (11) we can see that the crossover between the precursor
regime and the asymptotical one can be defined by 4R2pt� a2, whence, using (10), we can see that
the main factor of delaying the setting up of the asymptotic regime is the low rate of dissociation.
Of course, the transition to the asymptotic regime proceeds gradually, being characterized by
various transient values of the time exponents in the range 1/6 through 1/3.

In conclusion, we can say that we have identified a precursor regime in the Osrwald Ripening
process, of finite volume fraction and dominance of the large droplets, where the solute particles
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are trasferred directly to the large droplets from the small droplets surrounding the former at
short distances. The rest of the droplets have an approximately balanced radii, and the net
flow of particles between them is relatively small. By using the ”off-centre” diffusion theory we
derived the 1/6-power law for the temporal increase of the average radius in the precursor regime
of the Ostwald Ripening process, and recovered the 1/3-temporal exponent in the asymptotic
regime. The transient stages from the former to the latter regime exhibit intermediate values of
the temporal exponents. As one can see the two limiting regimes identified here in the Ostwald
Ripening process, namely the direct inter-droplet transfer of particles and the growing of a large
droplet from solution, have no relevant statistical aspects: the former is a diffusion process to a
large, growing droplet from small, shrinking droplets surrounding it at short distances (therefore,
essentially a droplet-pair problem), while the latter involves a single, large droplet growing by
diffusion directly from solution. The statistical considerations made in Ref.2 are in fact irrelevant
for the main result of that work, namely the 1/3-power law. In the inter-droplet direct transfer
mechanism the statistical distribution changes only irrelevantly at its two ends, where the small
and the large droplets are placed. On the contrary, the statistical aspects are significant, in the
sense that the distribution is much and fastly affected, in the transient regimes intervening between
the two limiting ones described above.
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