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Abstract

Since the quasi-classical approximation for atoms and ions holds over a moderate range
of distances, a linear version of the Thomas-Fermi model is devised, which is more practical.
The theory is applied to the atomic stability, ionization potential, electron affinity and atomic
plasmons, as well as to similar questions for a spherical-shell model of clusters, where the
typical molecular vibrations are also given; the magnetic moment, diamagnetic susceptibity
and electric polarizability are also computed in the latter case. Various extensions of, and
improvements upon, the shell-cluster model are discussed, including the treatment of the
discrete geometrical structure.

According to the quasi-classical approximation a quantal particle moves in an external potential
energy εpot such that

εkin + εpot = const , (1)

where εkin is the kinetic energy of the particle; the motion is described by a quasi-plane wave-
function, with a certain (quasi-) momentum, and the approximation is valid as long as the spatial
variations of the wavelength are small; this is so for potentials which vary slightly over particle
wavelength in comparison with the particle energy. For quasi-classical electrons in an electrostatic
potential ϕ(r) the above equation reads

εF − eϕ = −eϕ0 , (2)

where εF is the Fermi energy, −e is the electron charge, and the constant in (1) has been denoted
by −eϕ0 for convenience (obviously, it plays the part of a chemical potential); for a neutral atom
ϕ0 = 0, since the electrons are bound and ϕ vanishes at infinite, while for a positive ion ϕ0 > 0,
because the field does not vanish at infinite; in this latter case εF = e(ϕ − ϕ0) vanishes at some
boundary, and it is assumed to remain zero beyond this boundary; a positive ion has a finite
extension, in contrast with a neutral one, which extends up to infinite; a similar situation occurs
for a negative ion, where, however, a potential barrier appears, in addition. Equation (2) can also
be written as

h̄2

2m
k2

F − eϕ = −eϕ0 , (3)

where kF is the Fermi wavevector, and m denotes the electron mass. Since e(ϕ−ϕ0) varies slightly
we may replace k2

F in the equation above by kF δkF , where the parameter kF has to be determined;
this linearization is a good approximation as long as kF is comparable with δkF ; consequently,
equation (3) becomes

h̄2

2m
kF δkF − eϕ = −eϕ0 . (4)
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Similarly, for the electron density n = k3
F /3π2 we may use the linearized formula

n =
1

3π2
k2

F δkF , (5)

and

Ekin =
h̄2k4

F

10π2m

∫
dr · δkF (6)

for the corresponding kinetic energy Ekin = (V/10π2m)h̄2k5
F , where V denotes the volume. The

electric potential satisfies the Poisson’s equation

∆ϕ = −4πeZδ(r) + 4πen (7)

for a nuclear charge Ze placed at the origin; substituting δkF from (4) in (5) the Poisson’s equation
becomes

∆ϕ = −4πeZδ(r) +
8me2

3πh̄2 kF (ϕ− ϕ0) , (8)

which, in contrast to the usual Thomas-Fermi model for atoms,[1] is a linear equation.

For a neutral atom ϕ0 = 0 and ϕ vanishes at infinite; the above equation can be solved by a
Fourier transform; one obtains (

k2 + q2
)
ϕ(k) = eZ/2π2 , (9)

where
q = (8me2kF /3πh̄2)1/2 (10)

is a Thomas-Fermi screening wavevector. The solution is the screened Coulomb potential

ϕ =
Ze

r
e−qr ; (11)

one can check that the total number of electrons is∫
dr · n =

∫
dr · 2mekF

3π2h̄2 ϕ = q2Z
∫

dr · re−qr = Z , (12)

as it should be, according to the boundary conditions of the neutral atom. The kinetic energy (6)
is

Ekin =
4k3

F

5π

Ze2

q2
=

4

5π

(
3πh̄2

8me2

)3

Ze2q4 , (13)

while the potential energy is given by

Epot =
∫

dr · (ρeϕ−
1

2
ρeϕe) =

1

2

∫
dr · (ρeϕ + ρeϕc) , (14)

where ρe = −en is the density of the electron charge, ϕe is the electrons field and ϕc = Ze/r is
the nuclear (core) field; from (14) one gets

Epot = −3

4
Z2e2q . (15)

The total energy Ekin + Epot has a minimum value for

q =
2

3π
(15πZ)1/3me2

h̄2 = 0.77Z1/3me2

h̄2 , (16)
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which determines the parameter

kF =
1

6π
(15πZ)2/3me2

h̄2 ; (17)

(it may be taken as a measure of the average electron density of the atom, n = k3
F /3π2 ∼ Z2);

the minimum value of the energy is

Eb = − 9

16
Z2e2q = − 3

4π
Z2(15πZ)1/3ry = −11.7Z7/3eV , (18)

where ry denotes the rydberg e2/2aH = 13.6eV, and aH = h̄2/me2 = 0.53Å is the Bohr radius.
This Eb is the binding energy of the atom; it compares well with the empirical value 16Z7/3eV,
and it is a counter-balancing approximation in comparison with the non-linear Thomas-Fermi
model which gives 20.8Z7/3eV. The variation δkF is comparable with the parameter kF over a
distance R ∼ 1/q ∼ Z−1/3 (in Bohr radii), which may be taken as the ”radius” of the atom
(indeed, the radial density of electrons has a maximum value for R = 1/q; also, the electron
velocity is of the order of Z2/3 ); it is precisely such a moderate distance over which the quasi-
classical approximation is valid; indeed, as it is well known, the quasi-classical approximation
holds for distances longer than 1/Z, which is the radius of the first Bohr orbit, where the quantal
corrections matter (the corresponding delocalization energy being responsible for correcting the
Thomas-Fermi result), and shorter than 1, beyond which the wavelength becomes much longer
than the range (1/q) of the potential; from these conditions one can see that the quasi-classical
approximation holds for large atomic numbers Z; accordingly, the ”size” of the atoms does not
depend on Z, the electrons being localized between 1/Z and 1, which agrees satisfactorily with
the empirical data.

The potential energy of the electrons in the nuclear (core) field is Eec = −Z2e2q, according to
the above computations, while the Coulomb repulsion between electrons is Eee = Epot − Eec =
(1/4)Z2e2q (from (15), which gives Epot = −(3/4)Z2e2q); on the other hand, the kinetic energy
is Ekin = (3/16)Z2e2q, at equilibrium; one can see that 2Ekin = −(1/2)Epot, which is in contrast
with the virial theorem that requires 2Ekin = −Epot; this is not unexpected, as long as the linear
approximation employed here destroys the quadratic dependence of energy on momentum, and
introduces an undefinite momentum distribution of electron states. However, this circumstance
does not affect much the numerical computations; in addition, it is worth noting that the atom
within the linear approximation is ”spongier” over short and medium distances in comparison
with the non-linear Thomas-Fermi model, i.e. the electrons are farther away from the nucleus
within the linear approximation; this may explain the numerical discrepancy between the two
approaches.

The virial theorem offers the opportunity of correcting the linear approximation; indeed, since the
electron density must be increased, then a kinetic energy δEkin and a potential energy δEpot must
be added to the total energy; on the other hand, the virial theorem requires 2(Ekin + δEkin) =
−Epot − δEpot, and, since 2Ekin = −(1/2)Epot, one obtains 2δEkin + δEpot = −(1/2)Epot = 2Ekin;
according again to the virial theorem this latter quantity should vanish, which means that the
computations are affected by an error of the order of Ekin; indeed, substracting Ekin from the
binding energy (18) one obtains the corrected binding energy E ′

b = Epot = (4/3)Eb = −15.6Z7/3eV,
which agrees very well with the empirical data. A similar correction to the non-linear Thomas-
Fermi model (which overestimates the binding energy) would require an addional Ekin to the
binding energy, which lowers the coefficient 20.8 to 16.9. In general, the non-linear Thomas-Fermi
model overestimates the quantal corrections, with its strong variations over short distances, while
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its linear version underestimates these effects, as a consequence of the smother variations; the
actual numbers should therefore lie between the results of these two computations. As a matter of
fact, the first-order correction to the electron energies should be included within the perturbation
theory for the potential ϕ, in order to get an improved accuracy.

The quasi-classical approximation amounts to the Hartree approximation for Coulomb interaction
between electrons and the external Coulomb field of the nucleus; the results should be corrected
for the exchange Coulomb interaction; as it is well known, this exchange interaction is given by
Eex = −(1/4π3)V e2k4

F ; according to the linearization prescription it may also be written as

Eex = − 1

4π3
e2k3

F

∫
dr · δkF ; (19)

it is easy to see that it brings a Zq2-correction to the energy; this correcting term can be treated
perturbationally, and one can see easily that its effect is of the order of Z−2/3 in comparison with
the main contribution; the energy is therefore corrected by a Z5/3-term, which is too small to be
taken into account here. Therefore, one may neglect the exchange energy in such computations.

Let δn(r) be a variation of the electron density (i.e. of δkF in (5)), such that
∫

dr · δn(r) = 0; the
kinetic energy (6) brings no contribution to the change in the total energy, and, in fact, only the
term ρeϕ in (14) gives a potential energy

U = −2πe2

q2

∫
dr · (δn)2 (20)

(the terms linear in δn bring not an important contribution for the present discussion); the vari-
ation of density is related to a displacement field u by δn = −div(nu), which leads to the hamil-
tonian

H =
∫

dr ·
[
1

2
m

•
u

2
n− 2πe2

q2
(divnu)2

]
; (21)

the corresponding equation of motion can be written as

••
f = (2πe2/mq2)n∆f , (22)

for any component f of nu; the frequency ω can be found by Fourier transform,

ω2f(k) =
Ze2

4π2m

∫
dk′ · f(k′)

k′2

(k− k′)2 + q2
. (23)

For small k the function f has a range of the order of q, so that we obtain ω2 ∼ Ze2q3/m; hence,
h̄ω ∼ 13.6ZeV, which is the frequency of the density waves in the atom, i. e. of the atomic
plasmons. A similar estimation can be made directly in (22) for

∫
dr · f , by using the Poisson’s

equation.

We may add the centrifugal potential energy Ecf = h̄2(l+1/2)2/2mr2 to the potential energy −eϕ,
as given by (11), (where the quasi-classical orbital momentum l + 1/2 is used for (l2 + l)1/2), and
look for the occurence of various l-states; this requires obviously Ecf = −eϕ and E ′

cf = −eϕ′; one
obtains Z = 0.13(2l+1)3, as compared with the non-linear Thomas-Fermi result Z = 0.15(2l+1)3;
for Z = 0.17(2l + 1)3 one gets the atomic shell-model numbers Z = 5 for l = 1, Z = 21 for l = 2,
Z = 58 for l = 3, etc (in agreement with the empirical data).

The Poisson’s equation (8) can also be rewritten as ∆ϕ = q2(ϕ−ϕ0) and the condition ϕ ∼ Ze/r
for r → 0; the solution is ϕ = ϕ0 +(Ze/r)e−qr; this is helpful for positive ions, where the electrons
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may be viewed as being confined, more or less, to a certain finite region around the nucleus;
inside this region the potential is ϕ = ϕ0 + (Ze/r)e−qr, while at large distances the potential
is ϕ = ze/r, where ze denotes the positive charge of the ion; we shall assume z = 1, and the
continuity conditions read

ϕ0R1 + Zee−qR1 = e , Z(1 + qR1)e
−qR1 = 1 , (24)

for a certain radius R1 to be determined (together with the constant ϕ0). For large atomic numbers
Z (beyond 10) the solution to the second equation in (24) can be represented as qR1 = ln Z + β,
where β is a slowly increasing function of Z (from ∼ 1.6 for Z ∼ 10 to 2 for large Z). The
constant ϕ0 is therefore ϕ0 = eq/(1+ qR1) ' eq/(ln Z +β +1); −eϕ0 is the highest occupied level
of electron energy in the ion. The potential determined above is an approximate potential, and
the actual radius of the ion is determined by ϕ = ϕ0; making use of the potential given above,
one obtains qR2 = 1+ qR2 = ln Z +β +1; we take a mean value between R1 and R2 as the actual
radius R, which is given by qR = ln Z + β + 1/2; similarly, the constant ϕ0 should be slightly
higher, and we shall take for it the mean value ϕ0 = eq/R ' eq/(ln Z + β + 1/2) = αeq, where
α = (ln Z + β + 1/2)−1. Under these conditions the kinetic energy is

Ekin =
4

5π

(
3πh̄2

8me2

)3

Ze2q4
[
1− (1 + q2)e−qR

]
, (25)

or
Ekin = AZe2q4 − Aγe2q4(1 + q2) , (26)

where A = (4/5π)(3πh̄2/8me2)3 and γ = (2.73)−β−1/2. The potential energy is given by

Epot = −3

4
Z2e2q − 1

2
Zeϕ0 +

1

4
Z2e2q(e−qR + 2)e−qR +

1

2
Zeϕ0(1 + q2)e−qR , (27)

or

Epot = −3

4
Z2e2q − 1

2
(α− γ)Ze2q +

1

4
γe2q

[
γ + 2α(1 + q2)

]
. (28)

The minimum value of the total energy can be found by looking for an expansion in powers of
1/Z; one obtains

q =
[

2

3π
(15πZ)1/3 + (20γ/9π2) + ...

]
me2

h̄2 , (29)

the correction being caused by the q6-term in the kinetic energy. One can see that the screening
wavevector is slightly larger for a positive ion, in comparison with the neutral atom, i.e. the
electrons are bound a bit closer to the nucleus in the ion. The corresponding minimum value of
the energy is given by

Eb = − 3

4π
Z2(15πZ)1/3 − (5γ/π2)Z2 + ...ry ; (30)

making use of β ' 2 one gets γ ' 0.08 and the binding energy of the ion becomes

Eb = −11.7Z7/3 − 0.56Z2 + ...eV . (31)

The correction δEb = −0.56Z2eV to the binding energy of the positive ion, in comparison with
the neutral atom, is small, and it represents the relaxation energy after ionization. Within the
Thomas-Fermi model one may obtain an approximate representation for the ionization potential
as I = eϕ0 = e2q/R ' 21Z1/3/(ln Z + β + 1/2)eV; this represents the mechanical work needed
for extracting an electron from the atom. This ionization potential is a slowly varying function
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of Z, of the order of 12eV, in qualitative agreement with the empirical data. The relaxation
energy, which formally should contribute to the ionization potential, is counter-balanced by the
radiation energy associated with the electron motion during the ionization process, so that the
above formula for the ionization potential may be taken as a satisfactory approximation. The
Thomas-Fermi model offers also the opportunity of estimating the lowest electronic energy levels
of an atom; indeed, one electron moves, in this case, in the Coulomb potential of the ion, and
one may take the hydrogen-like values given by −13.6/n2eV for its energy levels; for n = 1 this
value is usually below the ionization potential (though not so for some large Z), but for n ≥ 2
the energy levels are given by eϕ0 − 13.6/n2eV; it may be estimated that the first excited energy
level lies somewhere around 3eV, as an average, above the ground-state energy.

For a negative ion of charge −e one may take the potential ϕ as being given by ϕ = ϕ0− z∗e/r +
[(Z + z∗)e/r]e−qr for r < R1, and ϕ = −e/r for r > R1, where z∗ is a charge to be determined;
the Poisson’s equation is satisfied, and the electrons are confined to a sphere of radius R1. The
continuity conditions give

(Z + z∗)(1 + qR1)e
−qR1 = z∗ − 1 (32)

and

ϕ0 = eq
z∗ − 1

1 + qR1

; (33)

one can see that z∗ must be greater than unity, and ϕ0 has positive values. The potential energy
−eϕ has, therefore, a maximum value, and the electrons must tunnel through this potential barrier
in order to escape from the negative ion; consequently, the electron affinity is eϕ0. The electrons,
however, according to the quasi-classical approximation, are confined to the sphere of radius R2,
where R2 is obtained from ϕ = ϕ0 as qR2 = ln(1 + z∗/Z). The charge z∗ must be confined
between the spheres of radius R1 and R2, as anti-bound states (damped states), according to the
form of the potential ϕ, and, under this circumstance, the quasi-classical approximation requires
small values of ϕ0, i.e. z∗ slightly above unity; in this case qR1 acquires large values, and the
potential barrier is very flat. Since the electron density is n = (1/4πe)q2(ϕ − ϕ0), within the
potential barrier we have a density of the order of n = (1/4πe)q2ϕ0; the charge z∗ is therefore
obtained as z∗ = (1/4πe)q2ϕ0(4πR3

1/3), and using (33), one gets z∗ = 1+3/(qR1)
2. Equation (32)

becomes approximately Z = 3ex/x3 − 1, for x = qR1, and the solution can again be represented
as qR1 ' ln Z + β, where β increases slowly with Z around β = 5. The electron affinity A is
therefore given by eϕ0 ' 3e2q/x3, and, using the same q as for a neutral atom (which is a good
approximation), one gets A = 63Z1/3/(ln Z + β)3eV for the electron affinity; this quantity varies
slowly with Z, and has a typical value 0.3eV, which agrees qualitatively with the empirical data.

Let us note that the Poisson’s equation can be solved both for positive and negative ions, under
appropriate boundary conditions, so that there is no need anymore of introducing the charge-
separation radius R1; this sort of more accurate computations, however, lead to results which are
close to the estimations made above. In this respect, the quasi-classical approximation may be
used for the motion inside the potential barrier, with a negative kinetic energy and a negative
density, within the linear approximation (providing the potential is smooth enough). It is worth
noting, however, that the quasi-classical approximation is inaccurate at large distances, so that the
above results concerning the ions should be taken only as a qualitative estimation. In addition, we
note that for short distances the quantum corrections are important, and in the case of a negative
ion these corrections may lead to quasi-bound electron states within the potential well, with
positive energies; in this circumstance we get a negative electron affinity. In general, Schrodinger’s
equation for one-particle wavefunctions can be considered, for the motion in the self-consistent



J. Theor. Phys. 7

electric potential (satisfying the Poisson’s equation), and this amounts obviously to the density-
functional approach; which, in the present case would be a linearized density-functional theory.

Let us consider an atomic cluster with a nuclear charge distribution eρ(r), where

ρ(r) =
∑

i

ziδ(r− ri) ; (34)

the Poisson’s equation reads

∆ϕ = −4πeρ(r) + 4πen(r) , (35)

and the linear approximation
h̄2kF

2m
δkF − eϕ = −eϕ0 (36)

is used for the quasi-classical description; the electron density is therefore given by

n(r) =
1

3π2
k2

F δkF =
1

4πe
q2(ϕ− ϕ0) , (37)

where

q2 =
8me2kF

3πh̄2 . (38)

In principle, kF depends on orientation too, as for an anisotropic Fermi surface, but the effects of
this anisotropy are small for large clusters, and they will be neglected here; in addition we take
ϕ0 = 0, as for a neutral cluster. We solve equation (35) for the Fourier transform ϕ(k) of the
potential, by using

ρ(r) =
∑

i

ziδ(r− ri) =
1

(2π)3

∫
dk · ρ(k)eikr , (39)

where

ρ(k) =
∑

i

zie
−ikri (40)

is the structure factor of the cluster. The field potential is easily obtained as

ϕ(r) =
4πe

(2π)3

∫
dk · ρ(k)

k2 + q2
eikr , (41)

and, according to the linear approximation, the kinetic energy is given by

Ekin =
h̄2k4

F

10π2m

∫
dr · δkF =

4

5π

(
3πh̄2

8me2

)3

Ze2q4 , (42)

where Z =
∑

i zi is the total charge-number of the cluster. The potential energy of the electrons
can be written as

Ee
pot =

∫
dr · (ρeϕ−

1

2
ρeϕe) =

1

2

∫
dr · (ρeϕ + ρeϕc) , (43)

where ρe = −en is the electronic charge density and

ϕc = e
∫

dr′ · ρ(r′)

|r− r′|
=

4πe

(2π)3

∫
dk · ρ(k)

k2
eikr (44)
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is the (core) field produced by the nuclei; the potential energy becomes

Ee
pot = −2πe2q2

(2π)3

∫
dk · ρ(k)ρ(−k)

k2 + q2

(
1

k2 + q2
+

1

k2

)
. (45)

The potential energy Ec of the nuclei must be added to the above electron energy; it is given by

Ec =
e

2

∫
dr · ρϕc =

2πe2

(2π)3

∫
dk · ρ(k)ρ(−k)

k2
. (46)

We assume a typical cluster model with a central charge z0 and the remaining zs = Z − z0

charges distributed symmetrically over a spherical surface of radius R; it may be called a shell-
cluster model;[2] as a first approximation we shall distribute the shell charge zs continuously and
uniformly over the cluster shell; the structure factor for this model is

ρ(k) = z0 + zs
sin kR

kR
, (47)

corresponding to a nuclear charge distribution

ρ(r) = z0δ(r) +
zs

4πR2
δ(r −R) . (48)

Making use of this structure factor one gets easily the field potential

ϕ(r) = e (z0 + zs sinh qR/qR)
e−qr

r
, for r > R ,

(49)

ϕ(r) =
e

r

(
z0e

−qr +
zs

qR
e−qR sinh qr

)
, for r < R ,

and the (core) potential of the nuclear distribution

ϕc(r) = eZ/r , for r > R ,

(50)

ϕc(r) = ez0/r + ezs/R , for r < R .

(One can check that the jump in the electric field E = −gradϕ at the cluster surface is zs, as it
should be; as well as for the electric field Ec = −gradϕc of the nuclear charges). Now, by direct
r-integration one obtains the energies

Ee
pot = −e2q

4
[3z2

0 +
2z0zs

x
(2− 2e−x + xe−x) +

(51)

+
z2

s

2x2
(−1− 2xe−2x + e−2x + 4x)] ,

where x = qR, and

Ec =
e2q

2
(Z2 − z2

0)
1

x
, (52)

so that the total potential energy reads

Epot = −e2q

4

[
3z2

0 +
2z0zs

x
(x− 2)e−x +

z2
s

2x2
(−1− 2xe−2x + e−2x)

]
. (53)
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This potential energy decreases monotonically with increasing x, indicating that the continuous

shell-cluster model is unstable; as it is known, the Thomas-Fermi model with a spatially extended
nuclear charge is indeed unstable.[3] In general, the stability arises from the quantal behaviour,
Fermi statistics included, for a discrete atomic structure; the latter is essential for a cluster-shell
of large size. Consequently, it is safe to use the above potential energy for small x, i.e.

Es
pot = −e2q

4

[
3Z2 − 2

Z2 − z2
0

x
+ ...

]
, for x ∼ 0 , (54)

while the cluster should be viewed as a collection of neutral atoms for large values of x; conse-
quently, one may use as a reasonable approximation the potential energy Epot obtained above, out
of which the potential energy of the nuclear charges Ec is subtracted; this amounts to Ee

pot given
by (51) for large x, i.e.

El
pot = −e2q

4

[
3z2

0 + 2
Z2 − z2

0

x
+ ...

]
, for x ∼ ∞ ; (55)

indeed, for moderate values of x the potential energy given by (55) is of the same order ∼ e2qZ2

as the potential energy given by (54), while only at large distances it overestimates the energy of
a collection of N neutral atoms; indeed, a collection of N neutral atoms, each of atomic number
z∗, such that Z = Nz∗, has a Thomas-Fermi potential energy of the order ∼ −e2qNz∗2, according
to the above computations, while the energy given by (55) is of the order ∼ −e2qz∗2 for large
x; therefore, as long as the equilibrium is reached for a moderate distance x the two asymptotic
potential energies given above can be used as a good approximation. By taking into account
the discrete atomic strucure of the cluster the 1/x-contributions in (54) and (55) will be slightly
modified, as well as the behaviour of the energy at moderate values of x. For a qualitative
estimation any reasonable interpolation between these two asymptotic potential energies may be
employed; we choose

Epot = [Es
pot − El

pot]e
−x + El

pot =

(56)

= −e2q

4

[
3z2

0 + (Z2 − z2
0)

(
3e−x + 2

1− 2e−x

x

)]
.

This energy has indeed a minimum value Epot = −0.41e2qZ2(1+0.8α) for x ' 1, where α = z2
0/Z

2;
a more accurate computation for a discrete distribution of nuclear charges will give, however, a
greater value for the parameter x at equilibrium, and a higher potential energy.

Adding now the kinetic energy given by (42), and minimizing with respect of q, one obtains

q =
2

3π
(8.2π)1/3Z1/3(1 + 0.27α)(1/aH) = 0.63Z1/3(1 + 0.27α)(1/aH) , (57)

and the binding energy of the cluster

Eb = −0.31Z2e2(1 + 0.8α)q = −5.31Z7/3(1 + α)eV ; (58)

or, in view of the discussion made above about the correcting kinetic energy and the virial theorem,
a more accurate value is probably E ′

b = (4/3)Eb = −7.08Z7/3(1 + α)eV. From x ' 1 obtained
above one gets the radius of the cluster at equilibrium

R ' 1/q = 1.6Z−1/3(1− 0.27α)(aH) . (59)
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The expansion of the potential energy around the minimum value gives E ′′
pot(x ' 1) = 0.56e2Z2q(1−

α), which leads to a typical frequency ω of the radial vibrations of the cluster as given by

h̄ω = 10Z3/2(1− 0.1α)
√

m/MseV , (60)

where Ms is the mass of the cluster shell.

Let us apply the above computations to a particular cluster Fe13(C2H2)6, which is claimed to have
been prepared recently;[4] very likely, this cluster has an icosahedral structure, and the ethylene
radical C2H2 behaves like an autonomous atomic entity. In general, the formation of such chemical
objects does not involve all the electrons, but only a small fraction; therefore, we assume a generic
structure of N atomic constituents, each of them with an effective charge z∗; for the present case
we take N = 13. The ”binding energy” of the cluster is in fact its formation enthalpy, which, by
using (18) and (58), can be written as

E ' N(5.31N4/3 − 11.7)z∗7/3eV ; (61)

for typical values of this energy of the order of 102− 103eV, as obtained from ”quantum ab initio”
computations, the effective charge in (61) is z∗ ∼ 0.2 − 0.75, which is in agreement with similar
estimations based on such computations (however, the validity of the Thomas-Fermi model for
such small values of the charge number is questionable; for a discrete distribution of nuclear
charges the effective charge z∗ increases, very likely toward z∗ ∼ 1); the radius of the cluster, as
given by (59), is

R ' 1.6z∗−1/3N−1/3(aH) , (62)

which yields R ' 1Å, for the above estimations; these values are also in agreement with those
obtained by other approaches; however, for a more realistic computation, where the discrete atomic
structure of the cluster is included, the values of the cluster radius will be larger; the characteristic
infrared frequency of radial vibrations as given by (60) is estimated at ∼ 20 − 200meV, i.e.
∼ 160− 1600cm−1, which is again in qualitative agreement with other estimations, and with the
experimental data.[5]

We note that from the above computations one can also obtain easily the change δE in the
cluster energy under deformations, i.e. for a variation δS of the area of its surface for a constant
volume; indeed, the cluster radius changes by δR ∼ δS/R in this case, and δR ∼ Rδq/q from
the equilibrium condition found above; hence, from δE ∼ (δq)2 around the equilibrium position,
one obtains readily the desired dependence δE ∼ (δS)2. We note also that such clusters may
also be viewed approximately as atoms with a total effective charge Nz∗, where N is the number
of atoms in the cluster; under these circumstances one may use the formulae obtained above
for the ionization potential I ∼ 21(Nz∗)1/3/ [ln(Nz∗) + β + 1/2] eV and electron affinity A ∼
63(Nz∗)1/3/ [ln(Nz∗) + β]3 eV; for the particular cluster mentioned above with N = 13 and z∗ ∼ 1
one gets the ionization potential I ∼ 10eV and the electron affinity A ∼ 0.3eV; the lowest-energy
electronic states can also be estimated in this case, by comparing the ionization potential with
the hydrogen-like energy levels. Another interesting point would be that of adopting a different
structure for the nuclear charge distribution in the above computations, for instance a uniformly
distributed charge within a sphere, i.e. a filled sphere, instead of a surface distribution; this model
would be more appropriate for much larger clusters, and may serve as a model calculations for the
surface energy. Of course, various geometric structures can also be considered in estimating the
structure factor, in order to get the most stable one. The results of such computations should be
compared with the non-linear Fermi model, in order to get an estimate of the quantal effects, as
discussed above, and first-order contributions within the perturbation theory must be included.
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In addition, the occurence of electron states with high orbital momenta l can be estimated for a
cluster, in a similar manner as for an atom; using the electron potential ϕ as given by (49) for
r > R, for instance, one obtains Z ' 0.03(2l + 1)3, which indicates that the atomic shell-model
for clusters with small effective charges z∗ (Z = Nz∗) is not appropriate (for large Z and l the
model is irrelevant; except for the shell-effects of state-bunches, as arising from finite motion and
potential symmetries; which, however, are not very effective in the case of the shell-cluster model);
indeed, the binding electrons move mainly around the nuclear shell in this case, and their orbital
momenta are relatively high.

Speaking of the orbital momentum of the electrons it is worth noting an interesting point regarding
the spin of the shell-cluster model described above. As it is well known, the spin-orbit interaction
is proportional to the derivative of the potential ϕ, and, since this derivative has opposite signs
across the cluster surface, one may infere that the electron spins have also opposite orientations
across this surface, in order to take advantage of this energy. Consequently, the cluster possesses
a total, non-vanishing spin S, proportional to the jump in the electron density across the cluster
surface,

S =
1

2
(4π)

∫
dr · r2n+ −

1

2
(4π)

∫
dr · r2n− , (63)

where n± are the electron densities in the two regions separated by the cluster surface; one may
also write

S = 2πR2
(∫

dr · n+ −
∫

dr · n−

)
= 2πR3∆(∂n/∂r)δR , (64)

where the integration is restricted to a small range δR across the surface (over which the derivative
of the potential falls abruptly), and ∆(∂n/∂r) is the jump of the density derivative across this
surface (we neglect the cluster central region, which contributes less); now, since n = (q2/4πe)ϕ,
we have ∆(∂n/∂r) = (q2/4πe)∆E , where E denotes the electric field across the surface, and one
obtains therefore ∆(∂n/∂r) = q2zs/4πR2 ' q2Z/4πR2. The cluster spin is consequently obtained
from (64) as S ' (1/2)Rq2ZδR, and taking δR ∼ 1/q as the range over which the density falls
most abruptly, one gets S ∼ (1/2)qRZ ∼ (1/2)Z; for a cluster with N atomic constituents and
an atomic effective charge z∗ we may estimate the spin as given by S ∼ Nz∗/2; for the particular
cluster Fe13(C2H2)6 discussed above (N = 13, z∗ ' 1) one obtains S ∼ 6.5, and therefore a
magnetic moment µ ∼ 13µB, where µB is the Bohr magneton. Consequently, the cluster is
paramagnetic; in addition, there exists also a small cluster diamagnetism. Indeed, as it is known,
the electrons in a uniform magnetic field H have a diamagnetic energy

δE = − e2

8mc2

∑
i

(H× ri)2 , (65)

where the summation extends over all the electrons (and c denotes the light velocity); from the
above equation one obtains easily

δE = − e2H2

12mc2

∑
i

ri
2 = − e2H2

12mc2

∫
dr · r2n(r) , (66)

where n(r) = q2ϕ(r)/4πe is the electron density, the field potential ϕ(r) being given by (49). The
computations in the equation above are straightforward, and one gets

δE = − 7e2ZH2

12mc2q2
(1−

√
α/7) = −1.47Z1/3(e2H2/mc2)(1− 0.14

√
α)(aH)2 ; (67)
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the atomic cluster has therefore a small diamagnetic susceptibility

χd = −2.94Z1/3(e2/mc2)(1− 0.14
√

α)(aH)2 =

(68)

= −1.57Z1/3(1− 0.14
√

α) · 10−4(aH)3 .

There is another point worth mentioning, namely the cluster electric polarizability. An external,
uniform electric field E produces a potential Φ = −Er and a small perturbation δn ∼ Er in
the electron density (the nuclear charge distribution is practically not affected); one can see that∫

dr · δn = 0, and the kinetic energy does not change; the variation of the potential energy must
compensate the external field energy, i.e.

−2πe2

q2
2nδn− 1

2
eϕcδn + enEr = 0 , (69)

where use has been made of n = q2ϕ/4πe; hence,

δn =
q2

4πe

ϕ

ϕ + ϕc/2
Er , (70)

so that the change in the energy is given by

δE = −2πe2

q2

∫
dr · (δn)2 = − q2

8π

∫
dr · ϕ2

(ϕ + ϕc/2)2
(Er)2 ; (71)

for an atom, one may neglect ϕ in the denominator above in comparison with ϕc, and obtains
δE = −E2/2q3; hence, the atomic polarizability χe = 1/q3 ' 2.2Z−1(aH)3, i.e. the well known
qualitative result χe ∼ R3, where R is the ”radius” of the atom. A similar calculation for the
shell-cluster model gives χe ' 1/3q3 ' 1.33Z−1 for the electric polarizability of the cluster; (in
general, however, one should note that the rn-integrals are overestimated by the Thomas-Fermi
model).

Finally, it is worth noting that the present method can be extended to finite temperatures, in
order to get the equation of state for clusters.[5]
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