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Abstract

The variational approach to the linear Thomas-Fermi model is explained again, and the
general principles of the atomic theory are briefly outlined.

In the non-relativist limit of small velocities one may consider the electrons in an atom as moving
in the Coulomb field of the atomic nucleus and interacting with one another by the Coulomb force;
the relativist interactions involve both spin-orbit and spin-spin couplings, and their main correction
to the energy is of the order of v2/c2, where v is the electron velocity and c is the light velocity;
the electron energies in a Coulomb field of a point-charge Ze, where Z is the atomic number and
−e is the electron charge, are given by the hydrogen-like energy levels[1] En = −Z2/2n2, in atomic
units, where n = 1, 2, ... is the (principal) quantum number (and the center-of-mass effects are
neglected); the atomic unit for energy is e2/aH = 2ry ' 27.2eV (i.e. twice the rydberg ry), and
aH = h̄2/me2 ' 0.53Å is the Bohr radius; here, h̄ is Planck’s constant and m is the electron mass;
according to the virial theorem the (average) kinetic energy T and the (average) potential energy
U in the Coulomb field are related by 2T = −U , so that the lowest-energy state of an electron
in a hydrogen-like atom has a kinetic energy of the order of 100keV for Z ∼ 100, for instance;
such an energy has to be compared with the electron rest energy mc2 ∼ 500keV; one may see
that the non-relativist limit is appropriate for atoms, except for stronger-bound electron states
for large Z; though they do contribute significantly to the atom energy, such states (which are
called also inner states) are a few for large Z, so that, under this circumstance, one may neglect,
to the first approximation, the relativist interactions between the electrons in atoms (as we may
neglect also the relativist hyperfine interaction between the electrons spins and the nuclear spins);
the atom conserves its (total) orbital momentum L in this case, as for the motion in a central
external field (plus interaction), and, likewise, the electrons conserve their total spin S; where the
relativist interactions matter however, only the total angular momentum J is conserved, as for a
closed system symmetric under rotations; in the former case the atomic states are classified by the
so-called LS-terms scheme (or Russell-Saunders scheme[2]), while in the latter case a J-labeled
fine structure of multiplets splits the LS-terms into levels, and a jj-coupling between individual
angular momenta j of the electrons is more appropriate.

On the other hand, the electrons in an atom are described, in principle, by a multi-particle
wavefunction; since the Coulomb attraction of the nucleus may accomodate many electrons on
single-particle states, according to the Pauli exclusion principle,3 a first attempt would be that
of treating the Coulomb repulsion between electrons as a small perturbation; however, such an
attempt is inadequate, in general, especially for heavy atoms, because at large distances from
the nucleus the Coulomb attraction of the latter is cancelled, to a large extent, by the Coulomb
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repulsion between the electrons, so that the Coulomb repulsion can not be treated, in general, as
a small perturbation, due to its long-range character; this long-range character of the Coulomb
force matters for the periphereal, or outer, electron states, which are the majority in heavy atoms;
a certain amount of repulsion between the electrons should, therefore, be included, beside the
attraction, such as to generate a screened, self-consistent field, wherein the individual electrons
move in single-particle states; the screening may ensure a certain ”smallness” of the self-consistent
field, such as to treat its effects as small perturbations; this ”smallness” is the slow spatial varia-
tion of the field. One may start, therefore, with a Slater determinant of single-particle states for
the electrons in an atom (spin included, called also spin-orbitals),[4] and derive the correspond-
ing Schrodinger equation, both for the ground-state and for the excited states, by requiring the
extrema of energy, the orthogonality, and the nomalization of the single-particle wavefunctions;
one obtains this way the (coupled and non-linear) Hartree-Fock equations,[5] which describe the
single-particle states of the electrons moving in a self-consistent field; this field includes both a lo-
cal direct contribution (the Hartree term) and a non-local (or off-diagonal) exchange contribution
(the Fock, or Fock-Dirac term[6]), the latter being more reminiscent of the original interaction.
The multi-particle wavefunction is approximated this way by an antisymmetrized sum of products
of single-particle wavefunctions, and the validity of this approximation remains to be checked. The
validation of this procedure consists in estimating the life-time of the Hartree-Fock single-particle
states, as due to the original interaction; in a usual manner, the Hartree-Fock self-consistent field,
which is the average of the original (total) interaction over the states we are looking for, is added to
the kinetic term and then subtracted from the original interaction, so that the latter contribution
is a new interaction, which is called the residual interaction; this residual interaction generates
finite life-times to the second-oder of the perturbation theory, as the first main contribution; as
long as this contribution is sufficientlly small to be neglected, one may say that the Hartree-Fock
single-particle states are the right states, and, consequently, the many-particle wavefunction of
the interacting system is satisfactorily represented by single-particle wavefunctions, to this ex-
tent; as known, the transition probabilities between single-particles states are controlled by the
corresponding matrix elements of the interaction, as compared with the energy gaps, and the as-
sociated finite life-times are due to the scattering processes described by these matrix elements;[7]
consequently, as long as the self-consistent field is small, i.e. varies slowly in space, the transition
probabilities are small enough to be neglected, and the single-particle states of the self-consistent
field are valid; this perturbational procedure for the residual interaction stops therefore to the
first-order, in the sense that the first-order contribution to energy vanishes, and the first-order
contributions to the Hartree-Fock single-particle states are irrelevant, as generating second-order
contributions to energy, i.e. contributions of the same order as those corresponding to finite life-
times; in this sense, the question of the ”convergence” of the perturbation series is both irrelevant
and useless. In the particular case of the electron states in an atom the self-consistent field is
small, almost vanishing, over large distances, due to the electrons screening; the Hartree-Fock
procedure is therefore valid, to this extent; the abrupt variation of the self-consistent field near
the nucleus does not contribute much, as it extends over a small region; comparatively, it may
affect more the inner electron states, and, in this respect, a genuine multi-particle wavefunction
might be more adequate for them; for the rest of the outer states, however, the single-particle
approximation is valid, in the sense discussed here. In addition, in view of its non-local character,
the exchange contribution is more effective for the inner electron states, whose spatial variations
are smoother, but it becomes gradually irrelevant for the outer single-particle states.

In the self-consistent field the single-particle states of the electrons in an atom occur in energy
shells, or bunches, according to the symmetries, and the form, of the field; to a first approximation
they may conventionally be labelled by a principal quantum number n and an orbital (or angular)
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quantum number l, both integers, as for a hydrogen-like atom, or a central field, and the filling up
of the states proceeds by various nl-configurations, or shells;[8] for any integer n the orbital num-
ber takes the values l = 0, 1, ...n− 1, with 2(2l + 1) states for every l, the factor 2 accounting for
the two spin orientations; for a closed shell the self-consistent field is central (due to the closure, or
completeness, of the spherical harmonics),[9] and the term of the atom is always 1S, i.e. the spin is
zero (2S+1 = 1) and the orbital momentum is zero (L = 0); accidentally, the n-energy levels in the
Coulomb field are fully degenerated for all l-values, and part of this degenearcy is approximately
preserved in the closed nl-configurations too; the atomic terms are computed, in general, by adding
the angular momenta and, separately, the spins, but for electron states in the same configuration,
like, for instance, in an open shell, these additions are restricted by the Pauli exclusion principle;
in this case, the possible terms are found by adding the magnetic numbers (projections of l) and
by adding the spins of the electrons; for an incomplete shell a mixture of Slater determinants is
needed in general (which is sometimes extended to mixing up the configurations), i.e. the orbital
momenta are, in general, coupled, by interaction, to one another; in an open, or incomplete, shell
the electrons try to minimize their Coulomb repulsion, so that their total spin tends to have a
maximum value (as for an as antisymmetric as possible spatial orbital); on the other hand, their
total angular momentum L tends also to have a maximum value; these are Hund’s semi-empirical
rules,[10] and they hold both for the first half of electrons and for the second half of electron holes
in an open shell; the energy levels change with increasing Z, and this variation combines with
the filling up of the shells to produce the small, irregular, quasi-periodic variations of some of the
atomic properties, like the ionization potentials, for instance; in addition, the nl-configurations
exhibit inversions in their energies, such that intermediate periods of elements intervene, and
are accomodated inside the main periods in the periodic table of elements; for instance, the en-
ergy order is approximately...4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, ...etc, where s, p, d, f, g, ... are used
for l = 0, 1, 2, 3, 4, ..., and several inversions occur also inside this series. The first main pe-
riod in the table of elements starts with H(1s1) and ends with He(1s2); it follows Li(1s22s1),
Be(1s22s2), and B(1s22s22p1) up to Ne(1s22s22p6); the next series is Na(...3s1), Mg(...3s2) and
Al(...3s23p1) up to Ar(...3s23p6); now, it appears the first inversion K(...4s1), Ca(...4s2) fol-
lowed by Sc(...4s23d1)...V(...4s23d3), Cr(...4s13d5), Mn(...4s23d5)...Ni(...4s23d8), Cu(...4s13d10),
Zn(...4s23d10); this is known as the Fe-group (or series), and it is worth noting for the two sd-
inversions, or competitions, corresponding to Cr and Cu; it follows Ga(......4s23d104p1) up to
Kr(......4s23d104p6); then it appears another inversion Rb(...5s1), Sr(...5s2), then the group of Pd
with several sd-inversions: Y(...5s24d1), Zr(...5s24d2), Nb(...5s14d4)...Rh(...5s14d8), Pd(...4d10),
Ag(...5s14d10), Cd(...5s24d10); followed by In(...5s24d105p1)...Xe(...5s24d105p6); here, another in-
version Cs(...6s1), Ba(...6s2), then La(...6s25d1), and now it follows the rare earths Ce(...6s24f 2)...

Eu(...6s24f 7), Gd(...6s25d14f 7), Tb(...6s24f 9)...Yb(...6s24f 14), Lu(...6s25d14f 14) with a df -competition;
the group of Pt continues with Hf(...6s25d24f 14),...Ir(...6s25d74f 14), Pt(...6s15d94f 14), Au(...6s15d104f 14),
Hg(...6s25d104f 14); followed by Tl(...6s25d104f 146p1)...Rn(...6s25d104f 146p6); finally, it follows Fr(...7s1),
Ra(...7s2), then Ac(...7s26d1) and the actinides Th(...7s26d2), Pa(...7s26d15f 2)... Np(...7s26d15f 4),
Pu(...7s25f 6)...Cm(...7s26d15f 7), Bk(...7s26d15f 8), Cf(...7s25f 10)...No(...7s25f 14), Lr(...7s26d15f 14),
Ku(...7s26d25f 14); etc; similar inversions occur for ions, as, for instance, V+(...3d4) (and not
(...4s13d3) or (...4s23d2)); etc.

For large Z the most part of the electrons in single-particle states are located at intermedi-
ate distances from the nucleus; the self-consistent field varies slowly over such distances, and
it accomodates many electrons, so that these electrons admit a quasi-classical (and statistical)
description.[11] Within such a description the electron states are described by quasi-plane waves,
and the Fermi sea is filled up to a certain quasi-Fermi momentum, which has a spatial varia-
tion, according to the self-consistent field; the quasi-classical description is valid as long as the



4 J. Theor. Phys.

electron wavelength has a slow spatial variation, i.e. the variation of the potential energy over a
distance of the order of the wavelength is small in comparison with the kinetic energy; therefore,
the quasi-classical description holds for distances longer than the radius aH/Z of the first Bohr
orbit, where the quantum corrections become important, and shorter than the Bohr radius aH ,
where the wavelengths get longer and longer (this is the meaning of ”intermediate” distances); the
quasi-classical description holds therefore for large Z. The quasi-classical motion of the electrons
proceeds by conserving the local classical energy of the Fermi level

h̄2k2
F/2m− eϕ = 0 , (1)

where kF is the Fermi momentum and ϕ is the self-consistent field; the total energy at infinite
vanishes, as for a neutral atom. This equation is invalid near the atomic nucleus, where the
field varies abruptly, and quantum corrections are needed for those regions; the main source of
error in this case is the replacement of the quantum kinetic energy by its classical form; on
the other hand, over those intermediate regions, where the quasi-classical description holds, and
the self-consistent field varies slowly, one may employ a linearized form of the kinetic energy by
replacing k2

F by kF δkF , where kF is regarded as a parameter constant in space, and the whole
spatial dependence is transferred upon δkF ; over these regions kF is indeed comparable with δkF ,
and such a linearized form of the kinetic energy is appropriate; however, in doing so, the abrupt
variation of the self-consistent field in the vicinity of the nucleus is neglected, and the results
must be corrected by the corresponding contribution of the potential energy; this may be done by
using the first-order perturbation theory for the self-consistent field ϕ over a certain small region
around the nucleus; this correction is made shortly below. Going further on with this approach,
the electron density n = k3

F/3π
2 is written as n = k2

F δkF/3π
2, such that, by using (1), one obtains

n = (2mekF/3π
2h̄2)ϕ = (q2/4πe)ϕ , (2)

where
q = (8me2kF/3πh̄

2)1/2 (3)

is a parameter to be determined variationally; the self-consistency is ensured through Poisson’s
equation

∆ϕ = −4πeZδ(r) + 4πen = −4πeZδ(r) + q2ϕ , (4)

whose solution is the screened field

ϕ =
Ze

r
e−qr , (5)

and the corresponding electron density is

n = q2 Z

4πr
e−qr ; (6)

one obtains this way a linearized version of the Thomas-Fermi model.[12] The kinetic energy
Ekin = V h̄2k5

F/10π2m of the Fermi gas is replaced by its linearized version

Ekin =
h̄2k4

F

10π2m

∫
dr · δkF =

e

5π2
(3πh̄2/8me2)3q6

∫
dr · ϕ , (7)

while the potential energy is given by

Epot =
∫
dr · (ρeϕ−

1

2
ρeϕe) =

1

2

∫
dr · (ρeϕ+ ρeϕc) =

(8)

= −e
2

∫
dr · (nϕ+ nϕc) = − q2

8π

∫
dr · (ϕ2 + ϕϕc) ,
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where ρe = −en is the density of the electrons charge, ϕe = ϕ − ϕc is that part of the field
produced by the electrons, and ϕc = Ze/r is the (core) field of the nucleus. The computations
are straightforward, and one obtains

Ekin =
4

5π
Ze2(3πh̄2/8me2)3q4 , (9)

and

Epot = −3

4
Z2e2q ; (10)

the minimum value of the total energy Ekin + Epot is reached for

q =
2me2

3πh̄2 (15π)1/3Z1/3 =
2

3π
(15π)1/3Z1/3a−1

H = 0.77Z1/3a−1
H ; (11)

the value of this minimal energy is

E = − 9

16
Z2e2q = −0.86Z7/3ry = −11.78Z7/3eV . (12)

One can see that the radial density of electrons∼ r2n has a maximum value at R ∼ 1/q ∼ Z−1/3aH ,
which may be taken as the ”radius” of the electrons charge; while the radius of the atom is
of the order of aH , emphasizing again the validity of the quasi-classical description for large
Z. The linearization of the basic equations of the quasi-classical description together with the
variational approach, as well as the approximate character of the quasi-classical description in
general, which removes the distinction between the kinetic energy and the potential energy, imply
the breakdown of the virial theorem; indeed, one can check easily that Ekin = −(1/4)Epot (instead
of Ekin = −(1/2)Epot); however, the present variational approach to the linearized Thomas-Fermi
equations is more appropriate, and the result is closer to the right one, especially when properly
corrected.

The correction to this energy can be computed in the following way; if one assumes a (quasi-)
plane wave for each electron state then the first-order perturbation theory gives a change

− e

V

∫
V
dr · ϕ = −3Ze2q · 1

x3
(1− e−x − xe−x) , (13)

in the energy of each state, where V = 4πR3/3 and x = qR; the total change in energy ∆E is
obtained by multiplying the above result by the total number of electrons in the volume V , which
is given by

∫
V dr · n; one obtains

∆E = −3Z2e2q · 1

x3
(1− e−x − xe−x)2 =

16

3
E · 1

x3
(1− e−x − xe−x)2 ; (14)

the function of x in the above equation has a maximum value 0.073 for x ' 0.75, which corresponds
to R ' Z−1/3aH , and yields

∆E = 0.39E = −4.56Z7/3eV ; (15)

which leads to a total energy

E = −11.78Z7/3eV − 4.56Z7/3eV = −16.34Z7/3eV : (16)

this is in good agreement with the empirical data, which give E ' −16Z7/3eV (up to higher-
order corrections, of course, including the small, irregular, quasi-periodic variations due to the
shell effects).[13] One may note that the non-linear Thomas-Fermi model leads to an energy
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E = −20.8Z7/3eV, which has to be corrected for an additional amount of kinetic energy; however,
the corrections are more difficult to be made, as the starting point of the non-linear model is
not the most appropriate, and convenient. It is also noteworthy that the exchange energy for a
Fermi gas[14] Eex = −(1/4π3)V e2k4

F , which, according to the linearization prescription, should be
written as

Eex = − 1

4π3
e2k3

F

∫
dr · δkF , (17)

is of the order of −4.53Z5/3eV, i.e. by a factor Z2/3 smaller than the Thomas-Fermi contribution;
for large Z it may, therefore, be neglected.

A more accurate treatment, beyond the quasi-classical description, implies the Schrodinger equa-
tion

− h̄2

2m
∆ψ − eϕψ = Eψ (18)

instead of (1), where the self-consistent field ϕ satisfies the Poisson’s equation

∆ϕ = −4πeZδ(r) + 4πe
∑
|ψ|2 ; (19)

these are Hartree’s equations for the single-particle states ψ, and the summation in (19) extends
over all these states, filled up with electrons; as one can see, the solution depends on the state of
the ensemble of electrons, and on Z; first, we write these equations again in reduced atomic units
aH for distances and e2/aH for energy (the potential ϕ being measured in e/aH):

−1
2
∆ψ − ϕψ = Eψ ,

∆ϕ = −4πZδ(r) + 4π
∑ |ψ|2 ;

(20)

then, we write the laplacean as

∆ =
1

r2

∂

∂r

(
r2 ∂

∂r

)
− 1

r2
l2 = ∆r −

1

r2
l2 , (21)

where l is the orbital momentum, and expand both the field ϕ and the wavefunctions ψ in spherical
harmonics:

ϕ =
√

4π
∑
lm

ϕlm(r)Ylm , ψ =
∑
lm

ψlm(r)Ylm ; (22)

using
Y ∗

lmYl′m′ =
∑

l′′m′′
C ll′

mm′(l′′m′′)Yl′′m′′ , (23)

where C ll′
mm′(l′′m′′) are the Clebsch-Gordan coefficients, the Poisson’s equation in (20) becomes

√
4π
∑

lm (∆r − l(l + 1)/r2)ϕlm(r)Ylm = −4πZδ(r)+

+4π
∑∑

l′m′l′′m′′
lm

C l′l′′
m′m′′(lm)ψ∗

l′m′ψl′′m′′Ylm ,
(24)

or
∆rϕ00 = −4πZδ(r) +

∑∑
lm |ψlm|2 ,

(∆r − l(l + 1)/r2)ϕlm =

=
√

4π
∑∑

l′m′l′′m′′ C l′l′′
m′m′′(lm)ψ∗

l′m′ψl′′m′′ , l 6= 0 ;

(25)
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similarly, the Schrodinger equation becomes

−1

2

(
∆r − l(l + 1)/r2

)
ψlm − ϕ00ψlm −

−
√

4π
∑

l′ 6=0m′l′′m′′
(−1)l′+m′

C l′l′′

−m′m′′(lm)ϕl′m′ψl′′m′′ = (26)

= Eψlm .

In view of the above two equations (25) and (26) one may treat the ϕl′m′-term in the Schrodinger
equation as a perturbation to the main part

∆rϕ00 = −4πZδ(r) +
∑∑

lm |ψlm|2 ,

−1
2
(∆r − l(l + 1)/r2)ψlm − ϕ00ψlm = Eψlm ,

(27)

of these two equations; this perturbation implies a coupling between the orbital momenta (includ-
ing their magnetic m-components and the spin degeneracy, i.e. the spin-orbitals), like in open
shells, so that one may expect both an inversion in the main energy levels and orbital competitions
(like the sd-competition, for instance); an inversion in the main energy levels may also be expected
from the main equations written above; in fact, their solutions are degenerate with respect to m, so
that we may label them ψl, or, introducing the radial quantum number n = 0, 1, ... (the principal
quantum number is now n+ l + 1), we may also write these equations as

−1
2
(∆r − l(l + 1)/r2)ψnl − ϕ00ψnl = Eψnl ,

∆rϕ00 = −4πZδ(r) + 2
∑

nl(2l + 1) |ψnl|2 ;
(28)

they may be solved variationally; indeed, ψnl ∼ rl for r → 0, while for r → ∞ one may assume
an exponential behaviour of the form e−qnlr/2; therefore, we may look for ψnl as

ψnl =
∑
i=0

Ai
nlr

l+ie−qnlr/2 , (29)

where the polynomial coefficients Ai
nl are determined by requiring the orthogonality (not neces-

sarily for radial functions with different values of l) and the normalization; the summations over
i depend on how many states we include, for instance, n = 0, ...5 for l = 0, n = 0, ...4 for l = 1,
and so on, up to, say, l = 6 (the calculations must be carried out for each Z, as well as for the
ground-state, or for each excited state); this way, we are only left with the parameters qnl, which
can be determined variationally by Rietz’ procedure, leading thus to a coupled system of equations
for qnl; of course, in order to carry out the variational approach one needs the self-consistent field
ϕ00; it may be found by assuming

ϕ00 =
∑
nl

χnl(r)

r
e−qnlr , (30)

where χnl(r) are polynomials, such that
∑

nl χnl(0) = Z; indeed, one can see this from Poisson’s
equation (28), where −4πZδ(r) may be replaced by ∆r(Z/r), and then, making use of the radial
laplacean given by (21), the polynomials χnl are completely determined (up to the qnl-parameters,
of course); the superposition (30) of screened Coulomb and polynomial potentials are reminiscent
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of the screened Coulomb potential obtained within the quasi-classical description; one may simplify
even further the treatment by assuming only one global q-screening parameter for the potential,

ϕ =
Z

r
e−qr , (31)

and determine this q-parameter by minimizing the total energy.

One may expect to get, by following up this approach, the inversions in the periodic table (like
4s3d, for instance), and, in this context, it is worth noting the effective radial potentials l(l +
1)/2r2 − ϕ in (28), which include the repulsive centrifugal potentials l(l + 1)/2r2; these effective
potentials for l 6= 0 have a sudden fall at small distances and a very long increasing tail for
large distances, such that they may accomodate high-energy (bound) states, slightly separated
in energy. This suggests a more adequate approach for computing the low-lying excited electron
states of a heavy atom; indeed, first one should solve the ion problem, i.e. a +Ze charge for
the nucleus and Z − 1 electrons, by a quasi-clasical description;[15] one determines this way the
chemical potential (−ϕ0, or the ionization potential ϕ0 of an atom) and the self-consistent field
ϕ; then, the high-energy levels of an electron moving in this field can be computed within the
quasi-classical description. First, the equation (1) becomes now

h̄2k2
F/2m− eϕ = −eϕ0 , (32)

and one assumes that the electrons are confined within the region where ϕ−ϕ0 > 0 (the ion having
therefore a finite radius); one may use the linearized approach and solve Poisson’s equation

∆ϕ = −4πeZδ(r) + q2(ϕ− ϕ0) (33)

(where ϕ0 may be included under the laplacean) within this region, and ∆ϕ = 0 outside, with
ϕ ∼ e/r at infinite as a boundary condition; once it solved for ϕ, and determined both ϕ0 and the
radius of the allowed region, we may pass to look for the electron energy levels in the potential
energy −e(ϕ − ϕ0);[16] the quasi-classical levels are given by the Bohr-Sommerfeld quantization
rules ∫

prdr =
∫ [

2
(
E − l(l + 1)/2r2 + ϕ− ϕ0

)]1/2
dr = 2πh̄(n+ γ) , (34)

where pr is the classical momentum, the integration is taken along a complete classical orbit, and
γ is a quantal correction (or ”defect”, which may be determined from the boundary conditions of
the wavefunctions; here, for a central field γ = 1/2);[17] the results are suitable for electron states
which are high in energy, so that it is more appropriate to use the quasi-classsical (l+1/2)2 instead
of l(l + 1); for highly excited states, where the electron feels practically the Coulomb field e/r,
one obtains the Rydberg levels En = −1/2(n+ γl)

2; one may also note that the small separation
∆E in energy levels, around a certain qausi-classical level E, is given by

∆E
∫
∂pr/∂E · dr = ∆E

∫
dr/vr = ∆E · T = 2πh̄ , (35)

where vr is the radial velocity and T is the corresponding classical period of motion; and this is
the content of the correspondence principle; the number of energy levels may also be estimated
within the quasi-classical approximation, as follows: for a potential energy U , such that E =
p2/2m + U < 0, the maximum value of the momentum p is pmax = (−2mU)1/2, and the number
of levels is given by

1

(2πh̄)3

4π

3

∫
dr · p3

max =
1

(2πh̄)3

4π

3

∫
dr · (−2mU)3/2 , (36)
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the integration being carried out over the region where U < 0; for a central field the orbital
degeneracy reduces the above formula to

1

2πh̄

∫
dprdr =

1

2πh̄

∫
dr
[
−2m(U + l2/2mr2)

]1/2
, (37)

so that the number of levels is obtained by integrating over dl/h̄; one gets

m

4h̄2

∫
dr(−U)r . (38)

It is also known how to estimate which new l-orbitals appear for what Z; indeed, one must have

−Ze
2

r
e−qr +

h̄2

2mr2
(l + 1/2)2 = 0 ,

(39)

Ze2

r2
e−qr +

Ze2

r
qe−qr − h̄2

mr3
(l + 1/2)2 = 0 ,

whence, by using q = 0.77Z1/3a−1
H , one obtains Z = 0.13(2l + 1)3; for 0.17(2l + 1)3 one gets

l = 1, 2, 3, .. for Z = 5, 21, 58, ..., in agreement with the periodic table of elements. Turning back
to the single-electron levels around the chemical potential ϕ0, they determine this way the lowest
excited states of the atom, and provide also an estimation of the small, irregular, quasi-periodic
variations of the ionization potentials. One may treat in a similar manner the electron affinity of
the atoms, i.e. the problem of the negative ion,[18] where, however, a potential barrier occurrs
for the additional electron.

The energy levels of the atoms and the corresponding wavefunctions are relevant for computing
the intensities of the atomic spectra; as well as for the atom response to various external fields,
like the electric or magnetic fields, where the Stark effect, the electric polarizability, the diamag-
netic susceptibility, the magnetic momentum, the (normal and anomalous) Zeeman effects are of
interest.

The extension of Hartree’s equations (18) and (19) to molecules and solids are called the density
functional equations;[19] usually, these equations includes an exchange contribution, provided by
the local variation of the total exchange energy, which depends on density; since the latter involves
spin correlations, the equations are also called spin density, or local spin density equations; they are
developments of previous theories, like the self-consistent molecular orbitals,[20] or the ”cellular”
method of metals.[21]
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