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Abstract

The empirical binding energy −16Z7/3eV of heavy atoms is computed herein by a Hartree-
type correction to a linearized version of the Thomas-Fermi model; the computations are
carried out by means of a variational approach. Corrections to the exchange energy are also
estimated.

The Thomas-Fermi model is based on the quasi-classical description and the statistical character
of the electronic single-particle states in heavy atoms, i.e. in atoms with large atomic numbers Z
(Z � 1).[1] The electrons are assumed to form an inhomogeneous gas of fermions, and the Fermi
wavevector kF is determined by a self-consistent field potential ϕ, according to

h̄2k2
F /2m− eϕ = 0 ; (1)

here, the notations are the usual ones, i.e. h̄ is Planck’s constant, m is the electron mass, and −e
is the electron charge. The electric potential ϕ is determined by Poisson’s equation

∆ϕ = −4πZeδ(r) + 4πne , (2)

where the electron density is given by n = k3
F /3π2, as for a Fermi gas. As it is well known, the

atomic binding energy as computed by means of this theory[1],[2] is given by E ' −20.8Z7/3eV,
a value which differs, to some extent, from the empirical value[3] E ' −16Z7/3eV. The main
source of errors resides, of course, in the substitution of a classical problem for the quantum one,
the Thomas-Fermi model being only the leading approximation to the exact result. Higher-order
corrections to the quasi-classical approximation, or the self-consistent Hartree, or Hartree-Fock
equations, as well as the density-functional approach, may be employed in order to improve upon
the result.[4],[5] However, such computation schemes are usually iterative, and they may converge
slowly, so that a higher accuracy is often difficult to be attained this way for a generic atom. In
this Note we present a variational approach to the Thomas-Fermi model which leads to better
numerical results; this is peformed by a linearized version of the quasi-classical approximation.

According to the prescriptions of the quasi-classical approximation eq. (1) is valid as long as the
potential ϕ varies slowly in space; consequently, the Fermi wavevector kF has also a slow spatial
variation, and one may linearize eq. (1) by substituting kF kF for k2

F , where kF is viewed as
a variational parameter, assumed to be constant in space, and the whole spatial dependence is
transferred upon the new variable kF ; this substitution is justified for those spatial regions where
kF and kF are comparable in magnitude, and one can see easily that this is so for a moderate
range of intermediate distances; it is precisely this range over which the most part of the electrons
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are localized in heavy atoms, so that one may expect to get a reasonable description by employing
this linearization procedure. Therefore we obtain

kF = (2me/h̄2kF )ϕ (3)

from the linearized version of eq.(1), and a similar linearization for the electron density n =

k3
F /3π2 → n = k

2

F kF /3π2 leads to

n = (2mekF /3π2h̄2)ϕ = (q2/4πe)ϕ , (4)

where the Thomas-Fermi wavevector q has been introduced through

q2 = 8me2kF /3πh̄2 ; (5)

now, Poisson’s equation (2) has the well known solution ϕ = (Ze/r)e−qr, i.e. the screened Coulomb
potential. One can see that this potential falls abruptly to zero at large distances, where the quasi-
classical description does not appply (as the wavelengths increase indefinitely there), varies slowly
over intermediate distances, as needed (and expected), and has an abrupt variation over short
distances, i.e. near the atomic nucleus; over small regions around the nucleus the computations
will be corrected, as required by the quantum behaviour of the electrons in such regions. For the
moment, however, we proceed further with computing the total energy.

By using the same linearization procedure the kinetic energy Ekin = V h̄2k5
F /10π2m of the electron

gas enclosed in a volume V is replaced by

Ekin = (h̄2k
4

F /10π2m)
∫

dr · kF =
e

5π2
(3πh̄2/8me2)3q6

∫
dr · ϕ , (6)

which yields

Ekin =
4

5π
Ze2(3πh̄2/8me2)3q4 . (7)

The potential energy is given by

Epot =
∫

dr · (ρeϕ−
1

2
ρeϕe) =

1

2

∫
dr · (ρeϕ + ρeϕc) =

= −e

2

∫
dr · n(ϕ + ϕc) = − q2

8π

∫
dr · (ϕ2 + ϕϕc) ,

where ρe = −en is the density of the electronic charge, ϕe = ϕ − ϕc is the electric potential
produced by the electrons, and ϕc = Ze/r is the Coulomb potential of the atomic nucleus. The
computations are straightforward, and one obtains

Epot = −3

4
Z2e2q . (8)

The total energy reads therefore

E = Ekin + Epot =
4

5π
Ze2(3πh̄2/8me2)3q4 − 3

4
Z2e2q , (9)

and it reaches the minimum value

E = − 9

16
Z2e2q = −11.78Z7/3eV (10)
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for the optimal value

q = (2me2/3πh̄2)(15π)1/3Z1/3 =
2

3π
(15π)1/3Z1/3a−1

H ' 0.77Z1/3a−1
H (11)

of the variational parameter q; the Bohr radius aH = h̄2/me2 ' 0.53Å is introduced here (the
atomic unit e2/aH ' 27.2eV is also used often in such type of computations). One can see
that the radial density of electrons ∼ r2n has a maximum value at R ∼ 1/q ∼ Z−1/3aH , which
may be taken as the ”radius” of the electronic charge, while the ”radius” of the atom is of the
order of aH ; thus, one can see again that the quasi-classical description for large Z is justified;
indeed, the quasi-classical description holds for distances longer than the radius aH/Z of the first
Bohr orbit and shorter than the Bohr radius, and the electronic ”radius” R ∼ Z−1/3aH is such
that the inequailities aH/Z � R ∼ aH/Z1/3 � aH are satisfied for large Z; and the most part
of the electrons are localized around R, which justifies the statistical character of the Thomas-
Fermi model for large Z. However, the linearization of the basic equations of the quasi-classical
description, together with the variational approach, as well as the approximate character of the
quasi-classical description in general, which alters the distinction between the exact kinetic and
potential energies, lead to the breakdown of the virial theorem; indeed, one can check easily that
Ekin = −(1/4)Epot, instead of Ekin = −(1/2)Epot, as required by the virial theorem; however, this
is not a major drawback to computations, as it is well known that approximate calculations may
give wrong values for both the ”kinetic” and ”potential” energies and still the total energy be
quite close to the exact one, by compensating errors;[6] one may expect such a possibility due to
the variational treatment employed here.

According to eq.(1) and the Thomas-Fermi model, the electronic states are quasi-plane waves
everywhere in space, whose wavevector depends weakly on position; they correspond to the elec-
trons motion in a weak potential, vanishing at large distances; the screened Coulomb potential ϕ
is consistent with this assunption, except for short distances where it has a sudden variation; the
electron single-particle energies must therefore be corrected for this additional potential energy
corresponding to the electrons motion close to the atomic nucleus; the correction is carried out to
the first order of the perturbation theory, by estimating the average of the potential energy −eϕ
over plane waves confined to a small spherical region of radius R around the nucleus; since the
actual quasi-plane waves are approximated this way by exact plane waves, we regard the radius
R as a variational parameter, and the correction to the energy will be minimized with respect to
R; doing so, we obtain an additional energy

−e

v

∫
v
dr · ϕ = −3Ze2q · 1

x3
(1− e−x − xe−x) , (12)

to each electron state, where v = 4πR3/3 and x = qR; the total change in energy ∆E is obtained
by multiplying the above result by the total number of electrons in the volume v, which is given
by

∫
v dr · n; one obtains

∆E = −3Z2e2q · 1

x3
(1− e−x − xe−x)2 =

16

3
E · 1

x3
(1− e−x − xe−x)2 ; (13)

this is a contribution to the total energy of the electrons, and it must be minimized with respect to
the parameter R, or, equivalently, x, as noted above; the function of x in eq. (13) has a maximum
value 0.073 for x ' 0.75, which corresponds to R ' Z−1/3aH , i.e. close to the electronic ”radius”,
and yields

∆E = 0.39E = −4.56Z7/3eV ; (14)
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the total energy is therefore

E = −11.78Z7/3eV − 4.56Z7/3eV = −16.34Z7/3eV , (15)

which is in good agreement with the empirical value E ' −16Z7/3eV. Since the values derived
here for the variational and the electronic ”radii” are close to each other one may say that the
computations are consistent; one can see also that ∆E amounts to cca 25% of the exact value of the
binding energy E, so that one may regard indeed ∆E as a correction to this energy; higher-order
perturbation theory calculations modify the electronic (quasi-) plane waves, and the single-particle
energies, according to the quantum behaviour; however, the Thomas-Fermi leading term to the
total energy will not be affected much, for large Z, according to the present calculations; in
particular, the quantum corrections account for the electronic shell effects, and for the small,
irregular behaviour of the atomic binding energy, as seen in the ionization potentials. In this
respect, we recall that the next-order correction to the binding energy comes, as it is known, from
the exchange energy, and it goes like Z5/3, i.e. it is smaller by a Z−2/3-factor than the leading
Z7/3-contribution given here; as one can see easily, the ∆E-correction computed here in (14)
corresponds to the Hartree contribution to the usual Thomas-Fermi model; a similar correction
to the exchange energy can also be obtained.

As it is well known the exchange energy of a homogeneous gas of electrons is given by Eex =
−(e2/4π3)V k4

F ; according to the linearization procedure this energy is written as

Eex = − e2

4π3
k

3

F

∫
dr · kF , (16)

and making use of the results obtained above, in particular of eq. (3) and of the variational
parameter q derived in (11), one obtains Eex = −4.53Z5/3eV. The correction to this exchange
energy originates in the quantum behaviour of the electrons near the atomic nucleus; to the
first-order of the perturbation theory it may be written as

∆Eex = − e2

(2π)6

∫
v
dr

∫
dr′

∫
F

dkdk′ · e−iQρ 1

ρ
, (17)

where Q = k − k′, ρ = r − r′, v is the spherical volume of radius R around the nucleus, and F
denotes the Fermi sea; in contrast to the Hartree correction given by (13) the integration over
r′ is extended over the whole space, due to the non-local character of the exhange energy. The
calculations in (17) proceed in the usual manner; first, we pass from the integration over r′ to the
integration over ρ; the result of this integration is 4π/Q2− (4π/3)r(3R+2r)+ ...; one may neglect
the small contribution of the second term, and retain the main term 4π/Q2; next, we perform the
k,k′-integrations, which lead to

∆Eex = − e2

4π3

∫
v
dr · k4

F ; (18)

according to the linearization procedure eq. (18) may also be written as

∆Eex = − e2

4π3
k

3

F

∫
v
dr · kF ; (19)

one gets straightforwardly
∆Eex = (1− e−x − xe−x)Eex ; (20)

where Eex is given by (16) and x = qR; for the electronic ”radius” x ' 1 one obtains ∆Eex '
0.27Eex, while for the variational ”radius” x ' 0.75 derived above one obtains ∆Eex ' 0.18Eex;
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it follows that the exchange energy changes by a factor which lies somewhere between 1.18 and
1.27; it is customary to refer such a factor in the exchange energy, denoted by α, to the value 2/3,
which corresponds to the homogenous electron gas, i.e. to Eex in the present calculations (and
which is known as the Kohn-Sham value[5]); this is the α-factor in Slater’s Xα-method (and in
density-functional calculations);[7] according to the present results the value of the α-factor runs
between α ' (2/3) · 1.18 ' 0.78 and α ' (2/3) · 1.27 ' 0.85; more accurate density-functional
computations[7],[8] of atomic and molecular orbitals recommend α ' 0.69 − 0.75, which are in
good agreement with the present results (the correcting terms neglected in the above ρ-integration
diminish to some extent the value of the α-factor); while Slater’s original value[9] is α = 1. A
comparison with more accurate computations of the binding energy would not be appropriate yet,
as such type of calculations are not available for heavy atoms.

References

[1] See, for instance, P. Gombas, Die Statistische Theorie des Atoms und ihre Anwendungen,
Springer, Berlin (1949).

[2] N. H. March, Proc. Cambr. Phil. Soc. 48 665 (1952); N. H. March and J. S. Plaskett, Proc.
Roy. Soc. (London) A235 419 (1957).

[3] See, for instance, J. M. C. Scott, Phil. Mag. 43 859 (1952), and references quoted therein.

[4] S. Flugge, Practical Quantum Mechanics, Springer, Berlin (1971); J. C. Slater, Quantum
Theory of Atomic Structure, McGraw-Hill, New York (1960).

[5] P. Hohenberg and W. Kohn, Phys. Rev. 136 B864 (1964); W. Kohn and L. J. Sham, Phys.
Rev. 140 A1113 (1965).

[6] See, for instance, J. C. Slater, Quantum Theory of Molecules and Solids, vol.1, Electronic
Structure of Molecules, McGraw-Hill, New York (1963).

[7] J. C. Slater, The Calculation of Molecular Orbitals, Wiley, New York (1979).

[8] K. Schwarz, Phys. Rev. B5 2466 (1972); see also R. Gaspar, Acta Phys. Akad. Sci. Hung. 3
263 (1954).

[9] J. C. Slater, Phys. Rev. 81 385 (1951).

c© J. Theor. Phys. 1999, apoma@theor1.theory.nipne.ro


