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Abstract

It is shown that the statement made by Bo Gao in Phys. Rev. Lett. 83 4225 (1999)
regarding Bohr’s correspondence principle is incorrect; it originates in misapplication of
the quasi-classical approximation, and the disregard of the short-range cut-off for singular
potentials.

In a recent letter[1] Bo Gao claims that the quasi-classical approximation and Bohr’s correspon-
dence principle break down for potentials having an attractive tail of the form −Cn/r

n for r →∞
and n > 2. The purpose of this comment is to show this assertion is incorrect. In his argumen-
tation the author of Ref.1 resorts to both his published[2] and unpublished quantum-mechanical
calculations, as well as to extrapolations of such calculations; however, he overlooks the finite
threshold energy for the bound states, and misinterprets the energy spectrum as derived from
Bohr-Sommerfeld’s quantization rules for such potentials; in addition, he overlooks the ”fall-on-
the-centre” phenomenon, specific to potentials behaving like −1/rn for r → 0 and n > 2.

With usual notations the radial Schrodinger equation reads

(p2
r/2µ+ Ul)ψ = Eψ , Ul = V (r) + h̄2l(l + 1)/2µr2 , (1)

where pr is the radial momentum and V (r) is a central potential; according to the quasi-classical
approximation

pr = [2µ(− |E| − Ul)]
1/2 , (2)

and Bohr-Sommerfeld’s quantization reads∮
prdr = 2πh̄(v + 1/2) , (3)

where v is an integral (quantum) number; the integration in (3) is performed over the entire
classical orbit, as for quantum bound states in an attractive potential V (r); for large values of
l the quasi-classical expression (l + 1/2)2 must be substituted for the quantum value l(l + 1)
of the square angular momentum. The approximation is valid for values of the classical action
much larger than Planck’s constant h̄, i.e. for large quantum numbers v, and, therefore, for a
large number of energy levels labelled by v; this implies the spatial variation of the wavelength
λ = 2πh̄/pr be as small,

|dλ/dr| � 1 , (4)
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over as large part of the orbit as possible (like in the geometrical optics), and the inter-spacing
∆E = h̄ω of the energy levels (i.e. quanta of energy), where ω is the classical frequency, be much
smaller than the kinetic energy Er = p2

r/2µ; this is the content of the quasi-classical approximation
and Bohr’s correspondence principle. The condition (4) of geometrical optics can also be written
as

πh̄ |dUl/dr| � prEr , (5)

and it is not satisfied near the turning points of the trajectory, where pr → 0; however, if for the
rest of the trajectory the kinetic energy is sufficiently high, which implies high values of −Ul, the
condition is fulfilled, and the quasi-classical approximation (and Bohr’s correspondence principle)
are valid; on the contrary, if the condition (4) is violated over a large part of the trajectory, then
the quasi-classical approximation and Bohr’s corerspondence principle break down. Within the
classical approximation the extent of the region close to the turning points is small in comparison
with the rest of the trajectory.[3]

The bound-states spectrum of potentials behaving at infinite like −Cn/r
n where n > 2 has a

threshold of finite, non-vanishing energy − |E0| (in contrast with the Coulomb potential); this
point is overlooked in Ref.1, in assessing the validity of the quasi-classical approximation; for any
fixed l and a sufficiently large value of Cn the classical trajectory corresponding to this threshold
energy has an outer turning point located at rt ∼ (Cn/ |E0|)1/n, as for the s-states analyzed in
Ref.1. An expansion around this turning point shows that the condition (5) is violated over a
distance |r − rt|, such that

|r − rt| /rt ∼ (π2h̄2/2µn)1/3C−2/3n
n |E0|(2−n)/3n ; (6)

one can see that |r − rt| /rt � 1 for any finite value of E0 providing Cn is sufficiently large;
therefore the quasi-classical approximation holds for the top of the spectrum, in contrast with the
claim made in Ref.1.

The value of the threshold energy |E0| is determined by the behaviour of the potential Ul over
short distances; it may be characterized by an average value Ul0 over a distance scale Rl; for a
quasi-classical spectrum −Ul0 must be large (in accordance with the large values of Cn), and the
threshold energy |E0| has a small, but non-vanishing, value. Making use of the parameters Ul0

and Rl one may estimate the quasi-classical spectrum near the threshold − |El0|; indeed, since
|E| is small at the top of the spectrum, one may expand (3) in powers of |E|; within the linear
approximation one obtains

|E| = 2(−Ul0)− 2πh̄(−Ul0/2µR
2
l )

1/2(v + 1/2) , (7)

or
|E| = |El0|+ 2πh̄(−Ul0/2µR

2
l )

1/2(vmax − v) , (8)

where the maximum quantum number vmax corresponds to the threshold energy; one can see that
the spectrum is linear (for small values of vmax − v) to the first approximation, and the level
inter-spacing ∆ |E| = 2πh̄(−Ul0/2µR

2
l )

1/2 is not a ”universal” constant as claimed in Ref.1, but it
depends on the short-range specific form of the potential (it has also a slight dependence on l). In
addition, ∆ |E| /Er ∼ h̄(−2µUl0R

2
l )
−1/2 � 1 for large values of the classical action (−2µUl0R

2
l )

1/2,
so that Bohr’s correspondence principle is valid. It is also worth noting that the total number of
levels Nl within the quasi-classical approximation is given by

Nl =
∫
dprdr/(2πh̄) =

(2µ)1/2

2πh̄

∮
(−Ul)

1/2dr , (9)
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and making use of the parameters introduced above one obtains Nl = (−2µUl0)
1/2Rl/πh̄; hence,

the energy levels (7) may also be written as

|E| = 2(−Ul0) [1− (v + 1/2)/Nl] , (10)

and the threshold energy becomes

|El0| = 2(−Ul0) [1− (vmax + 1/2)/Nl] ; (11)

one can see that, since vmax/Nl is slightly less than unity (for large vmax and Nl), the threshold
energy has indeed a small, but non-vanishing, value. For a comparison with quantum-mechanical
calculations, as attempted in Ref. 1, formulae of the type (7) and (8) should be employed for
the top of the spectrum (higher-order corrections included), and they depend non-trivially on the
details of the shorter-range part of the potential.

If the potential −Cn/r
n where n > 2 is extended towards r → 0 then the spectrum is not bounded

from below and the particle ”falls on the centre”; a large cut-off is then necessary to be imposed
upon the potential, located at very short distances. The condition (5) is satisfied for r → 0, so
that the quasi-classical approximation may be extended to lower-energy levels, corresponding to
states highly localized at the origin; the integral in (3) can now be estimated easily, as the main
contribution to it comes from the small region around the origin; within the first approximation
the integration may be limited to rt ' (Cn/ |E|)1/n, leading to

|E|(n−2)/2n =
πh̄(n− 2)

2(2µ)1/2
C−1/n

n (vmax − v + const) , (12)

where a constant const is associated with the maximum value of the quantum number; it originates
in the short-range cut-off imposed upon the potential for r → 0; it is customary to scale the energy
as E = αn(h̄2/2µ)n/(n−2)C2/(2−n)

n ε, where αn are numerical parameters, so that (12) becomes

|ε|(n−2)/2n = An(vmax − v + µD) , (13)

where µD is another customary notation used in Ref.1, corresponding to the constant in (12), and

An =
1

2
π(n− 2)α(2−n)/2n

n ; (14)

the next-order correction to (13) gives an additional prefactor 1− (n− 2)An/4n so that one gets

|ε|(n−2)/2n = An [1− (n− 2)An/4n+ ...] (vmax − v + µD) ; (15)

for n = 3 and αn = 4, as in Ref.1, one obtains |ε|1/6 = 1.11(vmax−v+µD), which is the formula[3]

employed in Ref.1; for n = 6 and αn = 16 one gets |ε|1/6 ' 1.45(vmax − v + µD), and higher-
order corrections are necessary to (15) in order to get a more accurate value for the numerical
coefficient (1.93 according to Ref.3 and Ref.1); in agreement with Ref.1 (for n = 3 and n = 6),
the quasi-classical approximation of the type given by (15), and Bohr’s correspondence principle
are validated by quantum-mechanical calculations for lower-energy levels, as expected; and the
level inter-spacing is indeed a ”universal” constant now (∆(ε1/6) = 1.11, for instance, for n = 3);
these levels corresponds to high quantum numbers vmax, as compared with the ”bottom’ of the
potential, and one can see that the short-range behaviour of the potential, and the corresponding
cut-off, are essential for a consistent picture. However, the formula (15) is not applicable for the
top of the spectrum, as misinterpreted in Ref.1; instead, formulae of the type given by (7) and (8)
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are appropriate in this case (higher-order corrections included), with a proper short-range cut-off
for the singular potential.

Finally, one may say that quasi-classical approximation and Bohr’s correspondence principle hold,
even for singular potentials of the form −Cn/r

n where n > 2, which exibit the ”fall-on-the-
centre” phenomenon; however, these potentials are unphysical, and the realistic potentials which
correspond to the photoassociative atomic spectroscopy exhibit a highly repulsive short-range
part; in this case the quasi-classical approximation is described by formulae of the type given by
(7) and (8) for the top of the spectrum.
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