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Abstract

It is shown that the statement madeby Bo Gao in Phys. Rev. Lett. 83 4225 (1999) re-
garding the breakdown of Bohr’s correspondence principle for singular potentials is incorrect;
it originates in a misinterpretation of the quasi-classical approximation, and the disregard of
the short-range cut-off for such potentials.

In a recent letter[1] Bo Gao claims that the quasi-classical approximation and Bohr’s correspon-
dence principle break down for potentials having an attractive tail of the form −Cn/r

n for r →∞
and n > 2. This is an incorrect assertion, originating in a misinterpretation of Bohr-Sommerfeld’s
quantization rules, the overlooking of the finite threshold energy for the bound states, and the
”fall-on-the-centre” phenomenon (for r → 0) specific to such singular potentials.

Bohr-Sommerfeld’s quasi-classical quantization rules read∮
prdr =

∮
[2µ(− |E| − Ul)]

1/2 dr = 2πh̄(v + 1/2) , (1)

for the radial motion of a particle of mass µ in a central attractive potential V (r), where

Ul = V (r) + h̄2l(l + 1)/2µr2 (2)

includes the centrifugal repulsion, and v denotes an integral (quantum) number. Equation (1)
is valid for large values of the classical action as compared with Planck’s constant h̄, i.e. for
large values of the quantum number v, and, consequently, for a large number of energy levels
labelled by v; it implies the geometrical-optics condition |dλ/dr| � 1 (λ = 2πh̄/pr) be satisfied
over as large parts of the classical trajectory as possible, as well as the energy quanta ∆ |E| = h̄ω,
where ω is the classical frequency, be much smaller than the the kinetic energy Er = p2

r/2µ. The
geometrical-optics condition can also be written as

πh̄ |dUl/dr| � prEr , (3)

and it is violated near the turning points of the trajectory; however, within the quasi-classical
approximation, the region where this condition breaks down is much smaller than the rest of the
trajectory.[2]

Indeed, the bound-states spectrum of potentials behaving at infinite like −Cn/r
n where n > 2 has

a threshold of finite, non-vanishing energy − |E0| (in contrast with the Coulomb potential); this
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point is overlooked in Ref.1, in assessing the validity of the quasi-classical approximation; for any
fixed l and a sufficiently large value of Cn the classical trajectory corresponding to this threshold
energy has an outer turning point located at rt ∼ (Cn/ |E0|)1/n, as for the s-states analyzed in
Ref.1. An expansion around this turning point shows that the condition (3) is violated over a
distance |r − rt|, such that

|r − rt| /rt ∼ (π2h̄2/2µn)1/3C−2/3n
n |E0|(2−n)/3n ; (4)

one can see that |r − rt| /rt � 1 for any finite value of E0 providing Cn is sufficiently large;
therefore the quasi-classical approximation holds for the top of the spectrum, in contrast with the
claim made in Ref.1. For large values of Cn, and of the efective potential Ul, an expansion of (1)
in powers of |E| leads to

|E| = Al(vmax − v + Bl) (5)

for the energy levels at the top of the spectrum (within the linear approximation), where

A−1
l = (4πh̄)−1

∮
(−Ul/2µ)−1/2dr ,

Bl = (2πh̄)−1
∮
(−2µUl)

1/2dr − 1/2− vmax ,
(6)

and vmax is the maximum value of the quantum number, corresponding to the threshold energy
|E0l| = AlBl; one can see that Bl (which can be related to the number of levels) has large values,
and the level inter-spacing Al is small in comparison with the average kinetic energy; this inter-
spacing is not a ”universal” constant as claimed in Ref.1, but depends on the behaviour of the
effective potential Ul over its entire range (Ul < 0), including its short-range behaviour. This type
of formulae had to be employed in Ref.1 in order to compare the quasi-classical approximation
with quantum-mechanical calculations.

If the potential −Cn/r
n with n > 2 is extended to r → 0 then the spectrum is not bounded from

below and the particle ”falls on the centre”; a large cut-off is then necessary to be imposed upon
the potential, located at very short distances. The condition (3) is satisfied for r → 0, so that
the quasi-classical approximation may be extended to lower-energy levels, corresponding to states
which are highly localized at the origin; the integral in (1) can now be estimated easily, as the main
contribution to it comes from the small region around the origin; within the first approximation
the integration may be limited to rt ' (Cn/ |E|)1/n, but higher-order corrections are necessary
for more accurate estimations; with the customary energy scale E = αn(h̄2/2µ)n/(n−2)C2/(2−n)

n ε,
where αn is a numerical parameter, one obtains

|ε|(n−2)/2n = An [1− (n− 2)An/4n + ...] (vmax − v + µD) , (7)

where

An =
1

2
π(n− 2)α(2−n)/2n

n (8)

and µD is a constant associated with the maximum value vmax of the quantum number, and
originating in the short-range cut-off imposed upon the potential for r → 0. For n = 3 and
αn = 4, as in Ref.1, one obtains |ε|1/6 = 1.11(vmax − v + µD), which is the formula[3] employed in

Ref.1; for n = 6 and αn = 16 one gets |ε|1/6 ' 1.45(vmax − v + µD), and higher-order corrections
are necessary to (7) in order to get a more accurate value for the numerical coefficient (1.93
according to Ref. 3 and Ref.1); in agreement with Ref.1 (for s-states and n = 3 and n = 6),
the quasi-classical approximation of the type given by (7), and Bohr’s correspondence principle
are validated by quantum-mechanical calculations for lower-energy levels, as expected; and the
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level inter-spacing is indeed a ”universal” constant now (∆(ε1/6) = 1.11, for instance, for n = 3);
these levels corresponds to high quantum numbers vmax, as compared with the ”bottom” of the
potential, and one can see that the short-range behaviour of the potential, and the corresponding
cut-off, are essential for a consistent picture. However, the formula (7) is not applicable for the
top of the spectrum, as misinterpreted in Ref.1; instead, formulae of the type given by (5) are
appropriate in this case, with a proper short-range cut-off for the singular potential.

Finally, one may say that quasi-classical approximation and Bohr’s correspondence principle hold,
even for singular potentials of the form −Cn/r

n where n > 2, which exibit the ”fall-on-the-
centre” phenomenon; however, these potentials are unphysical, and the realistic potentials which
correspond to the photoassociative atomic spectroscopy exhibit a highly repulsive short-range
part; in this case the quasi-classical approximation is described by formulae of the type given by
(5) for the top of the spectrum.
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