Journal of Theoretical Physics

Founded and Edited by M. Apostol

ISSN 1453-4428

Comment on "Breakdown of Bohr's correpondence principle"

M. Apostol Department of Theoretical Physics, Institute of Atomic Physics, Magurele-Bucharest MG-6, POBox MG-35, Romania email:apoma@theory.nipne.ro

Abstract

It is shown that the statement made in Phys. Rev. Lett. 83 4225 (1999) regarding the breakdown of Bohr's correspondence principle for singular potentials is incorrect.

In a recent letter[1] it is claimed that the quasi-classical approximation and Bohr's correspondence principle break down for potentials having an attractive tail of the form $-C_n/r^n$ for $r \to \infty$ and n > 2. This is an incorrect assertion, originating in misapplication of Bohr-Sommerfeld's quantization rules, the overlooking of the finite threshold energy for the bound states, and the "fall-on-the-centre" phenomenon (for $r \to 0$) specific to such singular potentials.

Bohr-Sommerfeld's quasi-classical quantization rules read

$$\oint \left[2\mu(-|E|-U_l)\right]^{1/2} dr = 2\pi\hbar(v+1/2) \quad , \tag{1}$$

for the radial motion of a particle of mass μ in a central attractive potential V(r), where the effective potential U_l includes the centrifugal repulsion, and v denotes an integral (quantum) number. Equation (1) is valid for large values of the classical action as compared with Planck's constant \hbar , *i.e.* for large values of the quantum number v, and, consequently, for a large number of energy levels labelled by v; it implies the geometrical-optics condition $|d\lambda/dr| \ll 1$ be satisfied over as large parts of the classical trajectory as possible, as well as the energy quanta $\Delta |E| = \hbar \omega$ (where ω is the classical frequency) be much smaller than the the kinetic energy $E_r = p_r^2/2\mu$ (where $p_r = 2\pi\hbar/\lambda = [2\mu(-|E| - U_l)]^{1/2}$ is the classical radial momentum). The geometrical-optics condition can also be written as $\pi\hbar |dU_l/dr| \ll p_r E_r$, and it is violated near the turning points of the trajectory; however, within the quasi-classical approximation, the region where this condition breaks down is much smaller than the rest of the trajectory.[2]

Indeed, the bound-states spectrum of potentials behaving at infinite like $-C_n/r^n$ where n > 2 has a threshold of finite, non-vanishing energy $-|E_0|$ (in contrast with the Coulomb potential); this point is overlooked in Ref.1. For any fixed l and a sufficiently large value of C_n the classical trajectory corresponding to this threshold energy has an outer turning point located at $r_t \sim (C_n/|E_0|)^{1/n}$, as for the s-states analyzed in Ref.1. An expansion around this turning point shows that the geometrical-optics condition is violated over a distance $|r - r_t|$, such that $|r - r_t|/r_t \sim (\pi^2 \hbar^2/2\mu n)^{1/3} C_n^{-2/3n} |E_0|^{(2-n)/3n}$; one can see that $|r - r_t|/r_t \ll 1$ for any finite value of E_0 providing C_n is sufficiently large; therefore the quasi-classical approximation holds for the top of the spectrum, in contrast with the claim made in Ref.1. For large values of C_n , and of the

48 (2000)

efective potential U_l , an expansion of (1) in powers of |E| leads to $|E| = A_l(v_{\text{max}} - v + B_l)$ for the energy levels at the top of the spectrum (within the linear approximation), where the coefficients A_l and B_l can easily be derived from (1); v_{max} is the maximum value of the quantum number, corresponding to the threshold energy $|E_{0l}| = A_l B_l$. The level inter-spacing A_l is not a "universal" constant as claimed in Ref.1, but depends on the behaviour of the effective potential U_l over its entire range ($U_l < 0$), including its short-range behaviour. This type of formulae (higherorder corrections included) had to be employed in Ref.1 in order to compare the quasi-classical approximation with quantum-mechanical calculations.

If the potential $-C_n/r^n$ with n > 2 is extended to $r \to 0$ then the spectrum is not bounded from below and the particle "falls on the centre"; a large cut-off is then necessary to be imposed upon the potential, located at very short distances. The geometrical-optics condition is satisfied for $r \to 0$, so that the quasi-classical approximation may be extended to lower-energy levels, corresponding to states which are highly localized at the origin; the integral in (1) can now be estimated easily, as the main contribution to it comes from the small region around the origin; within the first approximation the integration may be limited to $r_t \simeq (C_n/|E|)^{1/n}$, but higherorder corrections are necessary for more accurate estimations; with the customary energy scale $E = \alpha_n (\hbar^2/2\mu)^{n/(n-2)} C_n^{2/(2-n)} \varepsilon$, where α_n is a numerical parameter, one obtains $|\varepsilon|^{(n-2)/2n} =$ $A_n(v_{\rm max} - v + \mu_D)$, where A_n are numerical coefficients, and μ_D is a constant associated with the maximum value v_{max} of the quantum number, and originating in the short-range cut-off imposed upon the potential for $r \to 0$. For n = 3 and $\alpha_n = 4$ one obtains $A_3 = 1.11$, as in Ref.1 (see also Ref.3); for n = 6 and $\alpha_n = 16$ one gets $A_6 \simeq 1.45$, but higher-order corrections are necessary in order to get a more accurate value (1.93 according to Ref.3 and Ref.1); according to Ref.1 (for s-states and n = 3 and n = 6), the quasi-classical formulae of this type, and Bohr's correspondence principle, are validated by quantum-mechanical calculations for lower-energy levels, as expected (and the level inter-spacing A_n is indeed a "universal" constant now). These levels corresponds to high quantum numbers $v_{\rm max}$, as compared with the "bottom" of the potential, and one can see that the short-range behaviour of the potential, and the corresponding cut-off, are essential for a consistent picture. However, these latter formulae are not applicable for the top of the spectrum, contrary to what is done in Ref.1.

References

- [1] Bo Gao, Phys. Rev. Lett. **83** 4225 (1999).
- [2] See, for instance, R. E. Langer, Phys. Rev. 51 669 (1937) and Phys. Rev. 75 1573 (1949).
- [3] R. J. LeRoy and R. B. Bernstein, J. Chem. Phys. **52** 3869 (1970).

[©] J. Theor. Phys. 2000, apoma@theor1.theory.nipne.ro