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Abstract

It is shown that the statement made in Phys. Rev. Lett. 83 4225 (1999) regarding the
breakdown of Bohr’s correspondence principle for singular potentials is incorrect.

In a recent letter[1] it is claimed that the quasi-classical approximation and Bohr’s correspondence
principle break down for potentials having an attractive tail of the form −Cn/r

n for r → ∞
and n > 2. This is an incorrect assertion, originating in misapplication of Bohr-Sommerfeld’s
quantization rules, the overlooking of the finite threshold energy for the bound states, and the
”fall-on-the-centre” phenomenon (for r → 0) specific to such singular potentials.

Bohr-Sommerfeld’s quasi-classical quantization rules read∮
[2µ(− |E| − Ul)]

1/2 dr = 2πh̄(v + 1/2) , (1)

for the radial motion of a particle of mass µ in a central attractive potential V (r), where the
effective potential Ul includes the centrifugal repulsion, and v denotes an integral (quantum)
number. Equation (1) is valid for large values of the classical action as compared with Planck’s
constant h̄, i.e. for large values of the quantum number v, and, consequently, for a large number
of energy levels labelled by v; it implies the geometrical-optics condition |dλ/dr| � 1 be satisfied
over as large parts of the classical trajectory as possible, as well as the energy quanta ∆ |E| = h̄ω
(where ω is the classical frequency) be much smaller than the the kinetic energy Er = p2

r/2µ

(where pr = 2πh̄/λ = [2µ(− |E| − Ul)]
1/2 is the classical radial momentum). The geometrical-

optics condition can also be written as πh̄ |dUl/dr| � prEr, and it is violated near the turning
points of the trajectory; however, within the quasi-classical approximation, the region where this
condition breaks down is much smaller than the rest of the trajectory.[2]

Indeed, the bound-states spectrum of potentials behaving at infinite like −Cn/r
n where n > 2

has a threshold of finite, non-vanishing energy − |E0| (in contrast with the Coulomb potential);
this point is overlooked in Ref.1. For any fixed l and a sufficiently large value of Cn the clas-
sical trajectory corresponding to this threshold energy has an outer turning point located at
rt ∼ (Cn/ |E0|)1/n, as for the s-states analyzed in Ref.1. An expansion around this turning
point shows that the geometrical-optics condition is violated over a distance |r − rt|, such that

|r − rt| /rt ∼ (π2h̄2/2µn)1/3C−2/3n
n |E0|(2−n)/3n; one can see that |r − rt| /rt � 1 for any finite value

of E0 providing Cn is sufficiently large; therefore the quasi-classical approximation holds for the
top of the spectrum, in contrast with the claim made in Ref.1. For large values of Cn, and of the
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efective potential Ul, an expansion of (1) in powers of |E| leads to |E| = Al(vmax− v + Bl) for the
energy levels at the top of the spectrum (within the linear approximation), where the coefficients
Al and Bl can easily be derived from (1); vmax is the maximum value of the quantum number,
corresponding to the threshold energy |E0l| = AlBl. The level inter-spacing Al is not a ”uni-
versal” constant as claimed in Ref.1, but depends on the behaviour of the effective potential Ul

over its entire range (Ul < 0), including its short-range behaviour. This type of formulae (higher-
order corrections included) had to be employed in Ref.1 in order to compare the quasi-classical
approximation with quantum-mechanical calculations.

If the potential −Cn/r
n with n > 2 is extended to r → 0 then the spectrum is not bounded

from below and the particle ”falls on the centre”; a large cut-off is then necessary to be imposed
upon the potential, located at very short distances. The geometrical-optics condition is satisfied
for r → 0, so that the quasi-classical approximation may be extended to lower-energy levels,
corresponding to states which are highly localized at the origin; the integral in (1) can now be
estimated easily, as the main contribution to it comes from the small region around the origin;
within the first approximation the integration may be limited to rt ' (Cn/ |E|)1/n, but higher-
order corrections are necessary for more accurate estimations; with the customary energy scale
E = αn(h̄2/2µ)n/(n−2)C2/(2−n)

n ε, where αn is a numerical parameter, one obtains |ε|(n−2)/2n =
An(vmax − v + µD), where An are numerical coefficients, and µD is a constant associated with the
maximum value vmax of the quantum number, and originating in the short-range cut-off imposed
upon the potential for r → 0. For n = 3 and αn = 4 one obtains A3 = 1.11, as in Ref.1 (see also
Ref.3); for n = 6 and αn = 16 one gets A6 ' 1.45, but higher-order corrections are necessary in
order to get a more accurate value (1.93 according to Ref.3 and Ref.1); according to Ref.1 (for
s-states and n = 3 and n = 6), the quasi-classical formulae of this type, and Bohr’s correspondence
principle, are validated by quantum-mechanical calculations for lower-energy levels, as expected
(and the level inter-spacing An is indeed a ”universal” constant now). These levels corresponds
to high quantum numbers vmax, as compared with the ”bottom” of the potential, and one can see
that the short-range behaviour of the potential, and the corresponding cut-off, are essential for a
consistent picture. However, these latter formulae are not applicable for the top of the spectrum,
contrary to what is done in Ref.1.
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