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Abstract

The stability of the iron-ethylene cluster Fe13(C2H2)6 is studied within a metallic-bond-
type theory. The cluster is a centered Fe icosahedron with C2H2 radicals arranged symmet-
rically on the icosahedron sides.

Recently, an iron-ethylene cluster Fe13(C2H2)6 has been synthesized[1] by a laser-pulse reaction
in vapour-mixture flow; it seems to be a rather ”magic” cluster with respect to the number of
both iron and ethylene radicals Two hydrogen atoms (one from each carbon) are lost by ethylene
during this reaction, and the resulting C2H2 radical attaches itself to two iron atoms, like a clasp,
yielding Fe2(C2H2); this structure may be viewed as consisting of two Fe(CH) radicals, denoted
by R, which participate in the metallic bond of the cluster; therefore, the Fe13(C2H2)6 cluster
may be thought as consisting of 12 radicals R=Fe(CH) and one Fe ion. The aim of this letter
is to investigate the stability of this cluster by means of a recently introduced theory of metallic
bond.[2]

According to this theory the metallic bond of large clusters consisting of heavy atoms (high
atomic numbers Z) is treated within the quasi-classical description, by a variational approach to
the linearized Thomas-Fermi model;[3] it is a density-functional theory,[4] suitable for a slightly
inhomogeneous electron gas moving in a background of point-like cations of effective valence
z∗i , where i is the cation label. This effective valence charge is determined usually from the
atomic screening by means of the Thomas-Fermi model for atoms; it is given[2] by z∗ = z(1 +

0.84Z1/3)e−0.84Z1/3
, where z is the nominal valence of the atom.

For Fe (Z = 26, z = 2) we obtain z∗Fe = 0.57, while for the Fe ion in the R radical introduced
above we get z∗Fe/2 = 0.28, since one of the two valence electrons of this Fe ion is taken in the
Fe(CH) bond; we take this effective valence z∗R = 0.28 as that of the R radical. Acoording to Ref.2
the shape of the cluster is obtained by minimizing the potential energy

Epot = −1
4
q[3

∑N
i=1 z∗2i +

+
∑N

i6=j=1 z∗i z
∗
j (1− 2/q|ri − rj|) e−q|ri−rj|]

(1)

with respect to the dimensionless parameters xi = qri, where q is a variational Thomas-Fermi
screening wavevector; this parameter is derived from the minimum value of the quasi-classical
energy Eq = Ekin + Epot, where the kinetic energy is given by Ekin = (27π2/640)q4 ∑N

i=1 z∗i ; in
eq. (1) above N represents the number of atoms in the cluster. The total energy E = Eq + Eex
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Figure 1: Fe13(C2H2)6 with Fe13 in the icosahedron vertices and (C2H2)6 on sides

is obtained by adding the exchange contribution Eex = −(9/32)q2 ∑N
i=1 z∗i to the quasi-classical

energy. It is shown in Ref.2 that the total energy E obtained in this way coincides in fact with the
cluster binding energy. The equilibrium shape of the cluster is obtained from the minimum value
of the potential energy (1) by the usual gradient-method; this way, one gets[2] a Fe13-centered
icosahedron, with a quite stable ground-state of energy E = 68.9eV and a radial inter-atomic
distance r ' 2Å, in agreement with other calculations;[5] in addition, N = 13 is an outstanding
geometric magic number, in the sequence[2] N = 6, 11, 13, 15, 19, 23, 26, 29, 34, 45, 53, 57, 61. It is
also shown in Ref.2 that these magic numbers are universal for homo-atomic metallic clsuters, in
the sense that they do not depend on the effective valence z∗ (in a physically reasonable range
like, for instance, 0 < z∗ < 3), or the atomic species.
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Figure 2: Vibration spectrum for Fe13(C2H2)6 as estimated from the present theory

The above theory is applied to the R12Fe cluster, according to the discussion made above, and the
results are assigned to the iron-ethylene cluster Fe13(C2H2)6. By minimizing the potential energy
given by (1) one obtains a centered icosahedron shown in Fig.1, where the C2H2 radicals are lo-
cated on the icosahedron sides in a highly symmetric manner; this symmetry of the C2H2-radicals
distribution and the magic number 13 indicate that the corresponding Fe13(C2H2)6 cluster is itself
a ”magic” cluster with respect to the variation of both the Fe and the C2H2 content, in agree-
ment with the experimental mass-spectrum.[1] The radial inter-atomic distance of the Fe13(C2H2)6

icosahedron is 2.47Å, and the ”binding” energy obtained here is ' 19.92eV; noteworthy, this is
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only the metallic contribution to the total binding energy of the cluster, and the binding energy
involved by the reaction 2Fe+C2H2 →Fe2(C2H2) must be added (as well as the dissociation energy
implied by forming up the (C2H2) radical); however, the evaluation of the latter is beyond the
range of applicability of the present theory. It is also noteworthy that the above results do not
change qualitatively for reasonable changes in the effective valence charges z∗Fe and z∗R.

The vibration spectrum of the R12Fe cluster can be estimated by assuming a Fe(CH) mass for
the R radical; this is a qualitative approximation to the low- and middle-frequency range of the
spectrum of the Fe13(C2H2)6. The vibration spectrum obtained in this way is given in Fig.2, and
one can see that indeed it agrees qualitatively with other calculations of the vibration spectra for
Fe-based icosahedra.[6]

Finally, one may note that similar calculation can be carried out for other inclusions in metallic
clusters, like, for instance, hydrogenated- or oxygenated- iron clusters.[6],[7] In addition, according
to Ref.2 the electrons in a cluster move in a self-consistent potential

ϕ =
N∑

i=1

(z∗i / |r− ri|)e−q|r−ri| , (2)

which is a superposition of screened Coulomb potentials; for highly-symmetric clusters, or for
statistical ensembles of cluster isomers, the well-known (quadrupole-) deformed potential[8] can
be derived from (2); the lowest-energy electronic-excitation spectrum can then be computed,
including the cluster chemical potential, as well as the various cluster response functions; these
computations, related to the electronic properties of such clusters, are left for a forthcoming
investigation.
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