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Abstract

Single-particle properties are investigated for large homo-atomic metallic clusters consist-
ing of heavy atoms; the investigation is carried out by means of the self-consistent potential
derived within the framework of the quasi-classical description. In particular, a scheme is
given for estimating the ionization potentials for such clusters.

The well-known density-functional theory[1] for large metallic clusters consisting of heavy atoms
leads to a quasi-classical description and a variational treatment of the linearized Thomas-Fermi
model. The metallic cohesion is realized by each i-th atom in the cluster, i = 1, ...N (N � 1),
participating in the metallic bond with a fraction z∗i = αzi of its nominal (chemical) valence zi, the
α-factor accounting for the atomic screening and the ionic pseudo-potential. The electrons in such
metallic clusters form a slightly inhomogeneous electron liquid interacting with point-like ionic
charges z∗i ; this picture is a particularly attractive model for the metallic cohesion. The electron
screening derived within such a description is controlled by a screening wavevector q, which is
obtained variationally from the energy functional. The quasi-classical motion of the electrons
proceeds within the self-consistent potential

ϕ =
N∑

i=1

z∗i
|r− ri|

e−q|r−ri| , (1)

where ri denote the positions of the ions; effective inter-atomic potentials are obtained within this
treatment,

Φij = −1

2
z∗i z

∗
j q(1− 2/q|ri − rj|)e−q|ri−rj | , (2)

which resemble Buckingham-like potentials[2] (the distances are expressed in Bohr radii aH =
h̄2/me2 = 0.53Å and the energies are given in atomic units e2/aH = 27.2eV, where −e is the
electron charge, m is the electron mass and h̄ denotes the Planck’s constant). These effective
inter-atomic potentials lead to a potential energy

Epot = −1

4
q

3
N∑

i=1

z∗2i +
N∑

i6=j=1

z∗i z
∗
j f(q|ri − rj|)

 , (3)

where the function f is given by f(x) = (1− 2/x)e−x; the potential energy given by (3) includes
both the electron-ion attraction and the electron-electron repulsion (via screening), as well as the
ion-ion Coulomb repulsion. The equilibrium shape of the cluster is obtained by minimizing the
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function f with respect to the dimensionless position parameters xi = qri. The quasi-classical
energy functional Eq = Ekin + Epot is obtained by adding the kinetic energy

Ekin =
π

5
(3/8)3q6

∫
dr · ϕ = (27π2/640)q4

N∑
i=1

z∗i , (4)

as derived from the linearized Thomas-Fermi model of the slightly inhomogeneous electron liquid,
to the potential energy given above; hence, the variational parameter q is obtained by minimizing
this quasi-classical energy; it may be represented as q ∼ 1/a, where a is the average inter-ionic
distance at equilibrium. According to the quasi-classical description the binding energy is given
by the minimum value of the equilibrium quasi-classical energy Eq plus the exchange energy

Eex = − 1

2π3
(3π/8)2q4

∫
dr · ϕ = −(9/32)q2

N∑
i=1

z∗i . (5)

The cohesion energies of large homo-atomic metallic clusters of heavy atoms, as well as equilibrium
shapes, vibration spectra and geometric magic numbers, have been derived by means of the quasi-
classical description of the density-functional theory;[3] the numerical results are in good agreement
with those obtained by similar calculations, as well as to experimental data, where available.[4] In
particular, the geometric magic numbers obtained for the ground-state of homo-atomic clusters
are universal, in the sense that they do not depend on the chemical species. Herein, the single-
particle properties of the electrons in metallic clusters are investigated, within the framework of
the quasi-classical description. Beforehand, an estimation of the effective-valence charges z∗i is
presented, as based on the theory of the atomic screening.[5]

A similar variational approach can be employed for the linearized Thomas-Fermi model for heavy
atoms with atomic numbers Z � 1.[6] The variational screening wavevector is given by q =
0.77Z1/3, while the average of the Fermi wavevector with the self-consistent electron density n(r) =
(q2/4π)Ze−qr/r leads to q = (64Z/9π2)1/3 = 0.9Z1/3; one may adopt a mean value q = 0.84Z1/3.
On the other hand, the number Nout of ”outer” electrons, i.e. the electrons lying outside of a
sphere of radius R centered on the atomic nucleus, is given by

α = Nout/Z = 4π
∫ ∞

R
dr · r2n(r) = (1 + qR)e−qR ; (6)

according to the theory of the atomic screening this is the factor by which the nominal valence z
has to be reduced in order to get the effective number z∗ = αz of electrons participating in the
metallic bond. For practical purposes one may take, together with the mean value q = 0.84Z1/3

of the screening wavevector given above, the radius R = 1 (i.e. one Bohr radius aH), as suggested
for the ”atomic radius” by the quasi-classical theory of the Thomas-Fermi atomic model. Making
use of these values one obtains, for instance, z∗Na = 0.44 for sodium (Na, Z = 11, z = 1), z∗K = 0.34
for potassium (K, Z = 19, z = 1), z∗Fe = 0.57 for iron (Fe, Z = 26, z = 2), z∗Ag = 0.19 for
silver (Ag, Z = 47, z = 1), z∗Ba = 0.34 for barium (Ba, Z = 56, z = 2), etc; as expected from a
quasi-classical treatment the results are not reliable for small values of the atomic number Z (like
sodium, for instance), and the formula used above in (6) for the atomic-screening factor is affected
by large errors for very large values of Z (like barium); the estimation of the effective-valence
charge z∗ amounts in fact to determining realistic ionic pseudo-potentials, and, in this respect,
the approximate atomic-screening formula (6) resembles a well-known psudo-potential,[7] which
is known to give satisfactory results. According to the quasi-classical description the effective-
valence charge z∗ is the content of plane waves in the atomic-like orbitals corresponding to the
cluster wavefunction, such that, for each atom, z∗ electrons move quasi-freely in the cluster and
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participate in the metallic bond, while z−z∗ = (1−α)z electrons remain in the individual atomic-
like orbitals; z∗/z = α may therefore be viewed as the effective, or ”renormalized”, occupancy of
the single-particle electron orbitals in such clusters. However, the determination of this effective
occupancy α remain the main problem of the present approach, and, in most cases, it can only be
taken as a model parameter.

The single-particle properties are obtained by solving the Schrodinger’s equation for electrons
moving in the self-consistent potential ϕ given by (1); these single-particle properties are the
next-order corrections to the starting quasi-classical picture. Indeed, according to the quasi-
classical description only the slowly-varying part of the potential ϕ is relevant, so that one may
expand the Fourier representation

ϕ =
1

2π2

N∑
i=1

∫
dk

z∗i
k2 + q2

eikρi (7)

of the self-consistent potential given by (1) in powers of kρi � 1, and perform the k-integration
up to a cutoff K; one obtains

ϕ(r) = β0

∑
i

z∗i − β1

∑
i

z∗i ρ
2
i − β2

∑
i

z∗i ρ
4
i ..., (8)

where the coefficients β0,1,2 are given by

β0 =
2

π
q(β − arctan β) ,

β1 =
1

3π
q3(β3/3− β + arctan β) , (9)

β2 = − 1

35π
q5(β5/5− β3/3 + β − arctan β] ,

and β = K/q. Up to the quadrupole contributions the potential given by (8) can be rewritten as

ϕ(r) = ϕ0 − ϕxx
2 − ϕyy

2 − ϕyz
2 , (10)

the coefficients being given by ϕ0 = β0z0 − β1Q,ϕa = β1z0 + 2β2(Q + 2Qa), a = x, y, z, where
z0 =

∑N
i=1 z

∗
i is the total charge of the cluster, Q =

∑N
i=1 z

∗
i r

2
i denotes the quadrupole moment,

and Qa are the components of the quadrupole moment (Qx =
∑N

i=1 z
∗
i x

2
i , Qx =

∑N
i=1 z

∗
i y

2
i , Qx =∑N

i=1 z
∗
i z

2
i ). The potential given by (10) is the quadrupole-deformed potential employed frequently

for describing the single-particle properties of the metallic clusters;[8] one can see that in the long-
wavelength limit β → 0 the above potential has indeed a slow spatial variation, and consequently
it brings only small corrections to the plane-waves picture of the quasi-classical description.

Making use of a potential ϕ as the one given by (10) the single-particle hamiltonian reads

H = −1

2
∆ +

1

2
ω2

0[(ξxx)
2 + (ξyy)

2 + (ξzz)
2]− ϕ0 , (11)

where ω2
0 = 2β1z0 + 4β2Q and

ξ2
a = 1 +

4β2Qa

β1z0 + 2β2Q
, a = x, y, z ; (12)
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it corresponds to a quadrupole-deformed harmonic-oscillator hamiltonian of frequency ω0 and
deformation parameters ξa. The eigenvalues of the hamiltonian (11) are given by

E(nx, ny, nz) = ω0[(nx +
1

2
)ξx + (ny +

1

2
)ξy + (ny +

1

2
)ξz]− ϕ0 , (13)

where nx, ny, nz denote harmonic-oscillator quantum numbers; the corresponding single-particle
wavefunctions can be written as

ψnx,ny ,nz(x, y, z) = Nnx,ny ,nz · exp{−1
2
ω0[ξxx

2 + ξyy
2 + ξzz

2]}·

·Hnx((ξxω0)
1/2x) ·Hny((ξyω0)

1/2y) ·Hnz((ξzω0)
1/2z) ,

(14)

were the normalization factor Nnx,ny ,nz is given by

Nnx,ny ,nz = (π
√
π2nx+ny+nznx!ny!nz!)

−1/2 . (15)

Thereby one obtains the single-particle picture of the Hartree-Fock quasi-particles derived within
the quasi-classical description; each energy level is occupied by α electrons, the remaining 1 − α
being localized on the original atomic-like orbitals; the quasi-particles obtained in this way look
like strongly ”renormalized” quasi-particles of the slightly inhomogeneous electron liquid, with an
effective occupancy α; the ”renormalization” factor α is estimated by using the atomic screening
theory as indicated in (6). Denoting by E0 the highest-occupied level given by (13) one may write
down immediately the cluster ionization potential as

Eion = −αE0 + (1− α)Ea , (16)

where Ea is the atomic ionization potential.

The single-particle picture described above depends on the cutoff parameter β = K/q. In order
to illustrate the above calculations with numerical estimations one may make further simplifica-
tions of the quadrupole-deformed potential ϕ given by (10). First, one may note that the cutoff
parameter β can be written as

β ∼ a

R
' 1

N1/3
, (17)

where a is the average inter-atomic distance, R denotes the cluster radius, and N is the number of
atoms in the cluster (cluster’s size); in the limit of validity of the quasi-classical description N � 1
one can see that β � 1, and, consequently, the β0,1,2-parameters given by (9) can be written as

β0 '
2

3π
qβ3 , β1 '

1

15π
q3β5 , β2 ' − 1

245π
q5β7 ; (18)

so that β2 � β1 � β0; limiting oneself to the leading non-trivial contributions one obtains
ϕ0 ' β0z0 and ϕx = ϕy = ϕz ' β1z0, so that the self-consistent potential ϕ becomes the isotropic
harmonic-oscillator potential, ϕ = ϕ0− (1/2)ω2

0r
2, where the frequency ω0 is given by ω2

0 = 2ϕ1 '
2β1z0; therefore, the energy levels can be written as En = ω0(n+3/2)−ϕ0, and the corresponding
degeneracy is gn = (n+1)(n+2) (spin included). Under these circumstances the highest-occupied
energy level E0 reads E0 = (2q3β5z0/15π)1/2(n0 +3/2)−2qβ3z0/3π, where n0 is the corresponding
quantum number; since n0 ∼ N1/3 for large N , one can see immediately that E0 is vanishing in
this limit, in comparison with contributions of the order of ϕ0. Consequently, one may neglect E0

in the ionization potential (16), thus obtaining

Eion ' (1− α)Ea , (19)



J. Theor. Phys. 5

i.e. the atomic ionization potential properly ”renormalized” by the metallic bond. For a uniform
distribution of atoms in the cluster one obtains straightforwardly from (7) ϕ ' 4πz∗/a3q2, which is
a constant potential, and represents the main contribution within the quasi-classical description.
In other words, the quantum corrections for large metallic clusters are very small, as expected.
For a spherical cluster of radius R with a uniform distribution of atoms one obtains directly from
(1)

ϕ =
4πz∗

a3q2
(1− Fe−qR) , (20)

where

F = (1 + qR)
sinh qr

qr
, r < R ; (21)

for r > R the potential is given by ϕ = (4πz∗/a3q2)(cosh qr − sinh qr/qr)e−qr; hence, one can
obtian the electron density n(r) = (q2/4π)ϕ(r). One can see again that the surface (or finite-size)
effects are indeed very small for large clusters. Under the same assumptions one can also compute
the potential energy given by (3), surface correction included; the result of such a computation is

Epot = −3

4
qNz∗2

[
1− 2π

(aq)3

1

qR

]
, (22)

whence the surface tension σ = πz∗2/2a6q3.

The main contribution to the ionization potential of the metallic clusters as given by (19) does
not depend on the size, or the shape, of the cluster, but it is given solely by the chemical nature
of the atomic constituents of the cluster and the ”renormalization” factor α. Making use of (19)
and the factor α estimated before for various metallic ions, one obtains Eion(Na) = 2.88eV for
sodium (α = 0.44, Ea(Na) = 5.14eV),[9] Eion(K) = 2.86eV for potassium (α = 0.34, Ea(K) =
4.34eV), Eion(Fe) = 5.67eV for iron (α = 0.28, Ea(Fe) = 7.87eV), Eion(Ag) = 6.13eV for silver
(α = 0.19, Ea(Ag) = 7.57eV), Eion(Ba) = 4.32eV for barium (α = 0.17, Ea(Ba) = 5.21eV); these
values compare well with the experimental values[4] 3.5eV (Na), 2.8eV (K), 5.5eV (Ag).
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