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Abstract

The ”empirical” binding energy −16Z7/3eV of heavy atoms is computed by a Hartree-
type correction to a linearized version of the Thomas-Fermi model; the computations are
carried out by means of a variational approach. Corrections to the exchange energy are also
estimated.

As it is well-known,[1] the Thomas-Fermi model is based on the quasi-classical description and the
statistical character of the electronic single-particle states in heavy atoms, i.e. in atoms with large
atomic numbers Z (Z � 1). The electrons are assumed to form an inhomogeneous gas of fermions,
and the Fermi wavevector kF is determined by a self-consistent field potential ϕ, according to

h̄2k2
F /2m− eϕ = 0 ; (1)

(h̄ is Planck’s constant, m is the electron mass, and −e is the electron charge). The electric
potential ϕ is determined by Poisson’s equation

∆ϕ = −4πZeδ(r) + 4πne , (2)

where the electron density is given by n = k3
F /3π2, as for a Fermi gas. The atomic binding energy

as computed by means of this theory[1],[2] is given by E ' −20.8Z7/3eV, which is the exact result
in the limit Z →∞.[3] Actually, the atomic binding energy may be represented as an asymptotic
series in powers of Z−1/3, including, beside the leading term −20.8Z7/3eV, the so-called ”boundary
correction” 13.6Z2eV,[4],[5] the exchange contribution −5.98Z5/3eV (or −7.3Z5/3eV),[6] etc; in
addition, the relativistic effects must also be considered for large Z. Such an asymptotic series
reproduces satisfactory the experimental atomic binding energies, which, as it is widely agreed,
may be represented approximately as E ' −16Z7/3eV (at least for not very large values of Z).[7]
Various other computations have also been worked out, including higher-order corrections to
the quasi-classical approximation, self-consistent Hartree, or Hartree-Fock, equations, as well as
density-functional models.[8] In this Note we present a different approach to the problem, which
provides a more direct access to the E ' −16Z7/3eV-representation of the ”empirical” binding
energies of the atoms, and may throw additional light upon the nature of the Thomas-Fermi
model and the quasi-classical description. The method employed here is a variational treatment
of a linearized version of the Thomas-Fermi model, as based on the quasi-classical description. It is
worth noting that such linearized schemes of approaching the Thomas-Fermi model have recently
been suggested by various authors, especially in connection with the atomic clusters.[9]
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According to the prescriptions of the quasi-classical approximation eq. (1) is valid as long as the
potential ϕ varies slowly in space; consequently, the Fermi wavevector kF has also a slow spatial
variation, so that one may linearize eq. (1) by substituting kF kF for k2

F , where kF is viewed as
a variational parameter, assumed to be constant in space, and the whole spatial dependence is
transferred upon the new variable kF ; this substitution is justified for those spatial regions where
kF and kF are comparable in magnitude, and one can see easily that this is so for a moderate
range of intermediate distances; it is precisely this range over which the most part of the electrons
are localized in heavy atoms, so that one may expect to get a reasonable description by employing
this linearization procedure. Therefore, we obtain

kF = (2me/h̄2kF )ϕ (3)

for the linearized version of eq.(1), while a similar linearization for the electron density n =

k3
F /3π2 → n = k

2

F kF /3π2 leads to

n = (2mekF /3π2h̄2)ϕ = (q2/4πe)ϕ , (4)

where the Thomas-Fermi screening wavevector q has been introduced through

q2 = 8me2kF /3πh̄2 ; (5)

now, Poisson’s equation (2) has the well-known solution ϕ = (Ze/r)e−qr, i.e. the screened
Coulomb potential, as expected. One can see that this potential falls abruptly to zero at large
distance, where the quasi-classical description does not appply (as the wavelengths increase in-
definitely there), varies slowly over intermediate distances, as needed (and expected), and has an
abrupt variation over short distances, i.e. near the atomic nucleus; in the small region around the
nucleus the computations will be corrected, as required by the quantum behaviour of the electrons
in this region. For the moment, however, we proceed further on, by computing the total energy.

By using the same linearization procedure the kinetic energy Ekin = V h̄2k5
F /10π2m of the electron

gas enclosed in a volume V is replaced by

Ekin = (h̄2k
4

F /10π2m)
∫

dr · kF =
e

5π2
(3πh̄2/8me2)3q6

∫
dr · ϕ , (6)

which yields

Ekin =
4

5π
Ze2(3πh̄2/8me2)3q4 . (7)

The potential energy is given by

Epot =
∫

dr · (ρeϕ−
1

2
ρeϕe) =

1

2

∫
dr · (ρeϕ + ρeϕc) =

= −e

2

∫
dr · n(ϕ + ϕc) = − q2

8π

∫
dr · (ϕ2 + ϕϕc) ,

where ρe = −en is the density of the electronic charge, ϕe = ϕ − ϕc is the electric potential
produced by the electrons, and ϕc = Ze/r is the Coulomb potential of the atomic nucleus. The
computations are straightforward, and one obtains

Epot = −3

4
Z2e2q . (8)
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The total energy reads therefore

E = Ekin + Epot =
4

5π
Ze2(3πh̄2/8me2)3q4 − 3

4
Z2e2q , (9)

and it reaches the minimum value

E = − 9

16
Z2e2q = −11.78Z7/3eV (10)

for the optimal value

q = (2me2/3πh̄2)(15π)1/3Z1/3 =
2

3π
(15π)1/3Z1/3a−1

H ' 0.77Z1/3a−1
H (11)

of the variational parameter q; the Bohr radius aH = h̄2/me2 ' 0.53Å is introduced here, and the
atomic unit for energy e2/aH ' 27.2eV will also be used. One can see that the radial density of
electrons ∼ r2n, as given by (4), has a maximum value at R ∼ 1/q ∼ Z−1/3aH , which may be
taken as the ”radius” of the electronic charge (while the ”radius” of the atom is of the order of
aH); thus, one can see again that the quasi-classical description for large Z is justified; indeed,
the quasi-classical description holds for distances longer than the radius aH/Z of the first Bohr
orbit and shorter than the Bohr radius aH , and the electronic ”radius” R ∼ Z−1/3aH is such
that the inequailities aH/Z � R ∼ aH/Z1/3 � aH are satisfied for large Z; the most part
of the electrons are localized around R, which justifies the statistical character of the Thomas-
Fermi model for large Z. However, the linearization of the basic equations of the quasi-classical
description, together with the variational approach, as well as the approximate character of the
quasi-classical description in general, which alters the distinction between the exact kinetic and
potential energies, lead to the breakdown of the virial theorem; indeed, one can check easily that
Ekin = −(1/4)Epot, instead of Ekin = −(1/2)Epot, as required by the virial theorem; however,
this is not a major drawback, as it is well-known that approximate calculations may give wrong
values for both the ”kinetic” and ”potential” energies and still the total energy be quite close to
the exact one;[10] this is due to the variational treatment, as employed here.

According to eq.(1) and the Thomas-Fermi model, the electronic states are described by quasi-
plane waves everywhere in space, whose wavevector depends weakly on position; they correspond
to the electrons motion in a slowly-varying potential, vanishing at large distances; the screened
Coulomb potential ϕ is consistent with this assumption, except for short distances where it has
a sudden variation; the electron single-particle energies must therefore be corrected for this ad-
ditional potential energy, corresponding to the electrons motion close to the atomic nucleus; the
correction is carried out to the first order of the perturbation theory, by estimating the average of
the potential energy −eϕ over plane waves confined to a small spherical region of radius R around
the nucleus; the radius R must be regarded as a variational parameter, and the correction to the
energy will be minimized with respect to R; doing so, we obtain an additional energy

−e

v

∫
v
dr · ϕ = −3Ze2q · 1

x3
(1− e−x − xe−x) , (12)

to each electron state, where v = 4πR3/3 and x = qR; the total change in energy ∆E is obtained
by multiplying the above result by the total number of electrons in the volume v, which is given
by

∫
v dr · n;[11] one obtains

∆E = −3Z2e2q · 1

x3
(1− e−x − xe−x)2 =

16

3
E · 1

x3
(1− e−x − xe−x)2 ; (13)
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this is a contribution to the total energy of the electrons, and it must be minimized with respect to
the parameter R, or, equivalently, x, as noted above; the function of x in eq. (13) has a maximum
value 0.073 for x ' 0.75, which corresponds to R ' Z−1/3aH , i.e. close to the electronic ”radius”,
and yields

∆E = 0.39E = −4.56Z7/3eV ; (14)

therefore, the total energy is obtained as

E = −11.78Z7/3eV − 4.56Z7/3eV = −16.34Z7/3eV , (15)

which agrees well with the ”empirical” binding energy E ' −16Z7/3eV. Since the values derived
here for the variational and the electronic ”radii” are close to each other one may say that the
computations are consistent; one can see also that ∆E amounts to cca 25% of the binding energy
E, so that one may indeed regard ∆E as a correction to this energy; higher-order perturbation
theory calculations modify the electronic (quasi-) plane waves, and the single-particle energies,
according to the quantum behaviour; however, according to the perturbation theory, the main
contribution to the total energy given above is not affected significantly. It is worth noting that
the quantum correction given above vanishes in the limit Z → ∞, as the electrons approach the
quasi-classical limit; in addition, the main contribution −11.78Z7/3eV to the total energy derived
above is in error in the limit Z → ∞, as the linearization procedure is not valid anymore in this
limit; indeed, the linearization holds as long as the Fermi wavevector kF varies slowly in space;
a measure of the departure from this behaviour is given by the extent to which the variational
parameter q = 0.77Z1/3 given by (11) differs from the parameter q = (64Z/9π2)1/3 ≡ 0.9Z1/3 given
by (5), where the average kF is computed by using the electron density n(r) = (q2/4π)ϕ(r) =
(q2Z/4π)e−qr/r derived here; as one can see, the difference in the q-values is ∼ 15%, which implies
a similar decrease in the total energy from −16.34Z7/3eV to −18.8Z7/3eV; this value is closer to
the exact value −20.8Z7/3eV for very large Z, as it ought to be. For finite values of Z the error in
energy produced by the linearization procedure is nearly compensated by the error in the quantum
correction ∆E noted in Ref.11. This may explain the rather surprising proximity of the energy
E given by (15) to the experimental atomic binding energy. In this regard, one may say that the
present linearized Thomas-Fermi approach is more appropriate for an intermediate range of Z-
values, as corresponding to the ”actual” atoms. The exchange energy must be added to the result
given above by (15), and one can check that it brings a ∼ 4% -correction at most, for Z = 20.
As it can be seen easily, the ∆E-correction computed here in (14) corresponds to the Hartree
contribution to the linearized Thomas-Fermi model; a similar correction to the exchange energy
can also be obtained; though very small, we give it here since such corrections have previously
been discussed to a rather large extent, in the framework of the atomic theory;[6],[12] on the other
hand, the computation of such exchange corrections helps to further enlighten the virtues of the
linearized Thomas-Fermi model.

As it is well known the exchange energy of a homogeneous gas of electrons is given by Eex =
−(e2/4π3)V k4

F ; according to the linearization procedure this energy is written as

Eex = − e2

4π3
k

3

F

∫
dr · kF , (16)

and making use of the results obtained above, in particular of eq. (3) and of the variational
parameter q derived in (11), one obtains Eex = −4.53Z5/3eV. The correction to this exchange
energy originates in the abrupt variation of the electronic density near the atomic nucleus; to the
first-order of the perturbation theory it may be written as

∆Eex = − e2

(2π)6

∫
v
dr

∫
dr′

∫
F

dkdk′ · e−iQρ 1

ρ
, (17)
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where Q = k − k′, ρ = r − r′, v is the spherical volume of radius R around the nucleus, and F
denotes the Fermi sea; in contrast to the Hartree correction given by (13) the integration over r′ is
extended over the whole space, as a consequence of the non-local character of the exhange energy.
The calculations in (17) proceed in the usual manner; first, we pass from the integration over r′

to the integration over ρ; the result of this integration is 4π/Q2 − (4π/3)r(3R + 2r) + ...; one
may neglect the small contribution of the second term, and retain the main term 4π/Q2; next, we
perform the k,k′-integrations, which lead to

∆Eex = − e2

4π3

∫
v
dr · k4

F ; (18)

according to the linearization procedure eq. (18) may also be written as

∆Eex = − e2

4π3
k

3

F

∫
v
dr · kF ; (19)

one gets straightforwardly

∆Eex = (1− e−x − xe−x)Eex ; (20)

where Eex is given by (16) and x = qR; for the electronic ”radius” x ' 1 one obtains ∆Eex '
0.27Eex, while for the variational ”radius” x ' 0.75 derived above one obtains ∆Eex ' 0.18Eex; it
follows that the exchange energy changes by a factor which lies somewhere between 1.18 and 1.27;
it agrees well with similar exchange corrections derived in Ref.6 (which indicates a factor 1.22).
It is customary to refer such a factor in the exchange energy, denoted by α, to the value 2/3,
which corresponds to the homogenous electron gas, i.e. to Eex in the present calculations (and
which is known as the Kohn-Sham value[13]); this is the α-factor in Slater’s Xα-method (and in
density-functional calculations);[12] according to the present results the value of the α-factor runs
between α ' (2/3) · 1.18 ' 0.78 and α ' (2/3) · 1.27 ' 0.85; more accurate density-functional
computations[12],[14] of atomic and molecular orbitals recommend α ' 0.69− 0.75, which are in
good agreement with the present results (the terms neglected in the above ρ-integration diminish
to some extent the value of the α-factor); while Slater’s original value[15] is α = 1.

In conclusion, one may say that the variational treatment of the linearized Thomas-Fermi model
provides a consistent quasi-classical description for the atomic binding energies in the range of
realistic values of atomic numbers Z (heavy atoms), providing the quantum corrections (Hartree-
type contributions) are properly included.[16] Therefore, to ”the principle of unreasonable utility
of asymptotic estimates”[17] one may add the principle of ”expected utility of a consistent physical
picture”.
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