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Abstract

Extended bond-like orbitals are included in molecular-like orbitals, beside the localized
atomic-like orbitals, and an effective hamiltonian governing the chemical bond is derived;
the derivation is based upon the difference between the atomic- and bond-scale lengths.
The effective hamiltonian introduces the interaction between the electrons participating in
chemical bond and their electronic ”holes” in the atomic-like orbitals. A fractional occupancy
is established for the bond-like orbitals, which is specific to the chemical bond.

Atomic aggregates like molecules, atomic clusters or solids consist of atomic nuclei and electrons
interacting through Coulomb forces (relativistic corrections may be left aside to a first approxima-
tion); a particular case is represented by the many-electron atoms. Wavefunctions methods have
been developed both for the atomic and the chemical bond, based on the Hartree-Fock equations
for single-electron states.[1] The chemical bond is usually described by superpositions of atomic-like
single-electron orbitals (or equivalent sets of basis wavefunctions),[2] though molecular-like orbitals
have been pointed out from the early days of the chemical bond theories.[3] Density-functionals
methods[4] touch upon this point, especially in connection with the Thomas-Fermi model.[5] An
effective hamiltonian for the chemical bond is derived here, which provides a description of the
atomic aggregates within the quasi-classical theory and the linearized Thomas-Fermi model of a
slightly inhomogeneous electron liquid.[6]−[7]

An ensemble of N atoms with atomic numbers Zi and the nuclei placed at positions Ri, i =
1, 2, ...N , is described by the hamiltonian

H =
∑
α

p2
α/2m−

∑
iα

e2Zi

|Ri − rα|
+

1

2

∑
α 6=β

e2

|rα − rβ|
+

(1)

+
1

2

∑
i6=j

e2ZiZj

|Ri −Rj|
,

where rα and pα denote the position and, respectively, the momentum of the α-th electron, m
is the electron mass and −e is the electron charge; equation (1) includes the kinetic energy of
the electrons, the electron-nuclei Coulomb attraction, the electron-electron and the inter-nuclei
Coulomb repulsions; for the sake of the simplicity the atomic units Bohr radius aH = h̄2/2m =
0.53Å for lengths and e2/aH = 27.2eV for energy will be used.
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Making use of molecular-like orbitals ψs(r) for single-electron states denoted by s, the Hartree-Fock
energy functional reads

E =
∫
dr

∑
s

ψ∗
s(p

2/2)ψs −
∫
dr

∑
i

(Zi/ |Ri − r|)
∑
s

ψ∗
sψs +

+
1

2

∫
drdr′(1/ |r− r′|)

∑
s

ψ∗
sψs ·

∑
s′
ψ∗

s′ψs′ −

(2)

−1

2

∫
drdr′(1/ |r− r′|)

∑
s

ψ∗
s(r)ψs(r

′) ·
∑
s′
ψ∗

s′(r
′)ψs′(r) +

+
1

2

∑
i6=j

ZiZj/ |Ri −Rj| ,

where one may identify the direct (Hartree) interaction, expressed with the electron density∑
s ψ

∗
sψs, and the exchange (Fock, Dirac) contribution, written in terms of the bi-local ”electron

density”
∑

s ψ
∗
s(r)ψs(r

′).

The molecular-like orbitals ψs (spin included) consist of a superposition

ψs = ϕs + Φs (3)

of localized atomic-like orbitals ϕs and extended orbitals Φs; the latter may be called bond-like
orbitals; such a superposition may ensure the completeness of the single-electron wavefunctions;
the two sets of orbitals may be taken as being orthogonal to each other (like the orbitals within
each set, too). The atomic-like orbitals ϕs (or their linear combinations) are localized over atomic-
scale lengths, while the bond-like orbitals Φs extends over the size of the atomic aggregates.
Because of this great disparity in the scale lengths of the two sets of orbitals most of the matrix
elements in the energy functional (2) are small and, consequently, they may be neglected; this
holds for the off-diagonal matrix elements of the kinetic energy and for the interaction terms where
cross-contributions like ϕsΦs both to the electron density and to its bi-local generalization may
be neglected; in addition, cross-contributions to the exchange energy of the form ϕ∗

s(r)ϕs(r
′) ·

Φ∗
s′(r

′)Φs′(r) are also small contributions which may be neglected (in this respect the bi-local
”electron density” exhibits a wavefunction character rather than a true particle-density character).
Under these circumstances the energy functional E splits into an atomic-like energy functional Ea,
a bond-like energy functional Eb, and an interaction contribution Eab originating in the density-
density quadratic direct interaction in (3); indeed, in general, the variation of the particle density
is smaller than the variation of the wavevefunctions; therefore, one may write

E = Ea + Eb + Eab , (4)

where

Ea =
∫
dr

∑
s

ϕ∗
s(p

2/2)ϕs −
∫
dr

∑
i

(Zi/ |Ri − r|)
∑
s

ϕ∗
sϕs +

+
1

2

∫
drdr′(1/ |r− r′|)

∑
s

ϕ∗
sϕs ·

∑
s′
ϕ∗

s′ϕs′ −

(5)

−1

2

∫
drdr′(1/ |r− r′|)
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s(r)ϕs(r

′) ·
∑
s′
ϕ∗

s′(r
′)ϕs′(r) +

+
1

2

∑
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ZiZj/ |Ri −Rj|
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is the atomic-like energy functional (including the inter-nuclei Coulomb repulsion),

Eb =
∫
dr

∑
s

Φ∗
s(p

2/2)Φs −
∫
dr

∑
i

(Zi/ |Ri − r|)
∑
s

Φ∗
sΦs +

+
1

2

∫
drdr′(1/ |r− r′|)

∑
s

Φ∗
sΦs ·

∑
s′

Φ∗
s′Φs′ − (6)

−1

2

∫
drdr′(1/ |r− r′|)

∑
s

Φ∗
s(r)Φs(r

′) ·
∑
s′

Φ∗
s′(r

′)Φs′(r)

is the bond-like energy functional, and

Eab =
∫
drdr′(1/ |r− r′|)

∑
s

ϕ∗
sϕs ·

∑
s′

Φ∗
s′Φs′ (7)

is the interaction between the atomic- and bond-like orbitals.

It is more convenient now to highlight the usual linear-combination coefficients αs and βs trough
the substitutions ϕs → αsϕs and Φs → βsΦs, which obey the normalization condition

α2
s + β2

s = 1 (8)

(the complex nature of these coefficients is irrelevant), and use wavefunctions ϕs and Φs which
are normalized,

∫
dr· |ϕs|2 = 1,

∫
dr· |Φs|2 = 1; the energy functionals above can then be written

as

Ea =
∑
s

α2
st

a
s −

∑
s

α2
sn

a
s +

1

2

∑
ss′
α2

sα
2
s′d

a
ss′ −

(9)

−1

2

∑
ss′
α2

sα
2
s′e

a
ss′ +

1

2

∑
i6=j

ZiZj/ |Ri −Rj|

for the atomic-like part,

Eb =
∑
s

β2
s t

b
s −

∑
s

β2
sn

b
s +

1

2

∑
ss′
β2

sβ
2
s′d

b
ss′ −

(10)

−1

2

∑
ss′
β2

sβ
2
s′e

b
ss′

for the bond-like part, and

Eab =
1

2

∑
ss′
α2

sβ
2
s′d

ab
ss′ (11)

for the mixed term (7) in the energy functional, where the following notations have been intro-
duced: the kinetic energies

tas =
∫
drϕ∗

s(p
2/2)ϕs , tbs =

∫
drΦ∗

s(p
2/2)Φs (12)

of the single-electron states in both types of orbitals (atomic-like and, respectively, bond-like
orbitals); the electron-nuclei energies

na
s =

∫
dr

∑
i

(Zi/ |Ri − r|)ϕ∗
sϕs , nb

s =
∫
dr

∑
i

(Zi/ |Ri − r|)Φ∗
sΦs (13)
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of similar single-electron states; the (symmetric) direct

da
ss′ =

∫
drdr′(1/ |r− r′|)ϕ∗

sϕs · ϕ∗
s′ϕs′ ,

(14)

db
ss′ =

∫
drdr′(1/ |r− r′|)Φ∗

sΦs · Φ∗
s′Φs′

and exchange

ea
ss′ =

∫
drdr′(1/ |r− r′|)ϕ∗

s(r)ϕs(r
′) · ϕ∗

s′(r
′)ϕs′(r) ,

(15)

eb
ss′ =

∫
drdr′(1/ |r− r′|)Φ∗

s(r)Φs(r
′) · Φ∗

s′(r
′)Φs′(r)

interaction matrices; and finally the symmetric matrix

dab
ss′ =

∫
drdr′(1/ |r− r′|)(ϕ∗

sϕs · Φ∗
s′Φs′ + ϕ∗

s′ϕs′ · Φ∗
sΦs) (16)

of the direct interaction between the atomic-like orbitals and the bond-like orbitals.

One may substitute now α2
s = 1− β2

s as given by (8) into Ea and Eab above, and obtains

Ea =
∑
s

(tas − na
s) +

1

2

∑
ss′

(da
ss′ − ea

ss′) +

+
1

2

∑
i6=j

ZiZj/ |Ri −Rj| −

(17)

−
∑
s

β2
s (t

a
s − na

s +
∑
s′
da

ss′ −
∑
s′
ea

ss′) +

+
1

2

∑
ss′
β2

sβ
2
s′(d

a
ss′ − ea

ss′)

and

Eab =
1

2

∑
ss′
β2

s′d
ab
ss′ −

1

2

∑
ss′
β2

sβ
2
s′d

ab
ss′ ; (18)

it is worth noting here the occurrence of an attraction between the bond-like electrons and the
atomic-like electronic ”holes”, as expressed by the quartic β2

sβ
2
s′-term in Eab. The βs-dependent

part of the total energy E = Ea +Eb +Eab is now a general quadratic form (i.e. a quadratic form
plus a linear form) in β2

s ; its minimum values are obtained for those β2
s -parameters that satisfy a

system of linear equations of the form

−As +
∑
s′
Dss′β

2
s′ = 0 , (19)

where

As = (tas − na
s +

∑
s′
da

ss′ −
∑
s′
ea

ss′)− (tbs − nb
s)−

1

2

∑
s′
dab

ss′ =

(20)

= εa
s(HF )− εb

s(HF ) +
∑
s′

(db
ss′ − eb

ss′ −
1

2
dab

ss′) ,
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the D-matrix is given by

Dss′ = (da
ss′ − ea

ss′) + (db
ss′ − eb

ss′)− dab
ss′ , (21)

and
εa,b

s (HF ) = ta,b
s − na,b

s +
∑
s′
da,b

ss′ −
∑
s′
ea,b

ss′ (22)

are the Hartree-Fock single-electron energies of the atomic-like and, respectively, bond-like orbitals.

The solutions of equations (19) may give, in principle, the molecular-like bond of an atomic
aggregate, i.e. the stability and the equilibrium of such an aggregate as described by the molecular-
like binding; the existence of solutions for equations (19) may be viewed as the core of the general
solution to the chemical bond; at the same time, equations (19) may also be viewed as providing the
criterion of chemical binding through molecular-like orbitals. The detailed analysis of equations
(19) is a matter of specific investigation; however, their general structure lends itself to a qualitative
discussion given below.

First, one may note that in view of the disparity between the atomic- and bond-scale lengths the
mixed-direct interaction dab

ss′ between the two types of orbitals is small in comparison with the
other contributions to Dss′ in (21); secondly, the exchange energies are usually smaller than the
direct energies, as a consequence of their delocalization character; therefore, one may assume that,
very likely, Dss′ is a positive definite matrix. It follows that As in (19) must have positive values
in order to have a solution for β2

s (0 < β2
s < 1). However, for inner atomic states the Hartree-

Fock energies have large negative values (due mainly to the large electron-nucleus attraction na
s),

so that the corresponding As quantities acquire negative values in this case, and equations (19)
have no solutions (β2

s = 0); the inner atomic shells do not provide (spontaneously) electrons for
participating in the chemical bond, as expected. The discussion will therefore be restricted for
the moment to the upper atomic shells. For the ideal case of atoms separated at infinite, i.e. for
independent atoms, the highest Hartree-Fock energy of the atomic-like orbitals, i.e. the chemical
potential of the electrons in atoms, has negative values, while all the quantities in (20) related to
the bond-like orbitals vanish; it follows that equations (19) have no solution in this case either,
as expected; indeed, rigorously isolated atoms are stable, they could not tend to bind together.
Getting the atoms closer to one another the atomic-like orbitals ϕs become superpositions of
single-atom orbitals χa localized ar Ri,

ϕs(r) =
∑
ia

csiaχa(r−Ri) , (23)

so that the matrix elements given in (12)-(16) acquire a dependence on the inter-nuclei distances;[8]
in addition, the Hartree-Fock energy levels of the upper electronic shells in the individual atoms
split now in energy bands, while the chemical potential εb

s(HF ) of the bond-like electrons in
(20) acquires lower values; under such circumstances some of the As quantities, corresponding
to the upper levels, may acquire positive values, and the corresponding atomic-like orbitals tend
to participate with electrons in the chemical bond; in this case equations (19) may have a few
non-vanishing solutions for small values of the parameters β2

s , and the chemical bond may appear
thereby, as described by the bond-like part of the energy functional E = Ea + Eb + Eab given by
(10), (17) and (18).

It is convenient to write the total energy functional as E = E1 + E2, where E1 includes the
entire Eb without the electron-nuclei attraction (which is included in E2), plus all the quartic
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β2
sβ

2
s′-terms in Ea and Eab; the remaining terms are included in E2; in other words, all the quartic

β2
sβ

2
s′-contributions to the total energy functional are included in E1 plus the kinetic energy of the

bond-like electrons; while all the remaining contributions are relegated to E2. One obtains

E1 =
∑
s

β2
s t

b
s −

1

2

∑
ss′
β2

sβ
2
s′d

ab
ss′ +

1

2

∑
ss′
β2

sβ
2
s′d

b
ss′ −

(24)

−1

2

∑
ss′
β2

sβ
2
s′e

b
ss′ +

1

2

∑
ss′
β2

sβ
2
s′(d

a
ss′ − ea

ss′)

and

E2 =
∑
s

(tas − na
s) +

1

2

∑
ss′

(da
ss′ − ea

ss′) +

+
1

2

∑
i6=j

ZiZj/ |Ri −Rj| −

(25)

−
∑
s

β2
s (t

a
s − na

s +
∑
s′
da

ss′ −
∑
s′
ea

ss′)−

−
∑
s

β2
s (n

b
s −

1

2

∑
s′
dab

ss′) ;

making use of (19)-(22) the energy E2 can also be written as

E2 =
∑
s

(tas − na
s) +

1

2

∑
ss′

(da
ss′ − ea

ss′) +

(26)

+
1

2

∑
i6=j

ZiZj/ |Ri −Rj| −
∑
s

β2
s (As + tbs) ;

it is worth noting that E2 contains a purely atomic-like energy, plus the last contribution to (26)
which may also be written as −∑

s β
2
s t

b
s −

∑
ss′ Dss′β

2
sβ

2
s′ ; it is also worth emphasizing that the

attraction between the bond-like electrons and the bare nuclei (the nb
s-term) does not appear in

the equilibrium expressions of the energy functionals E1,2, as a consequence of the minimization
of the β2

s -quadratic form, expressed by equations (19). In addition, one may also note that the
presence of the kinetic energy of the bond-like electrons (tbs-terms) both in the last term in E2 and
in the bond-like energy functional E1 is related to the molecular-like extension (3) of the electron
dynamics, such as to include the contribution of the extended bond-like orbitals Φs.

It is easy now to identify the effective hamiltonian corresponding to the bond-like energy functional
given by (24); first, one may note in (24) the fractional occupancy factor β2

s of the bond-like orbitals
Φs, which, according to the discussion above, is non-vanishing (β2

s 6= 0) only for a limited number
of upper energy levels, corresponding to atomic-like orbitals a in the upper atomic shells; it is
convenient to introduce the density

ρ =
∑
s

β2
sϕ

∗
sϕs (27)

of electronic ”holes” in the ionic cores, i.e. the density of positive charge in the upper atomic
shells, and note that the energy functional E1 includes the kinetic energy of the bond-like electrons
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(first term in (24)), the attraction between the bond-like electrons and the positively-charged ionic
cores (the second term in (24)), the Coulomb repulsion between the bond-like electrons (the third
term and the fourth term (24)), and finally, the Coulomb repulsion between the ionic cores (last
term in (24); a bi-local atomic-like density similar with (27) may formally be used here for the
exchange inter-ionic energy); therefore, according to (24), the effective hamiltonian of the bond-like
electrons reads

Hb =
∑
α

p2
α/2m−

∑
α

∫
dr′ · ρ(r′)

|r′ − rα|
+

1

2

∑
α 6=β

1

|rα − rβ|
+

(28)

+
1

2

∫
drdr′ · ρ(r)ρ(r

′)

|r′ − r|
.

Making use of (23) the ionic charge density may be written as

ρ =
∑
ias

β2
s |csiaχia|2 , (29)

where χia is the atomic orbital χa(r−Ri) centered on Ri, and the contribution of the mixed terms
has been neglected; introducing the notation αia =

∑
s β

2
s |csia|

2 one may also write

ρ =
∑
ia

αia |χia|2 , (30)

which gives an effective charge
z∗i =

∑
a

αia (31)

for every atom; for a point-like charge distribution of the ionic cores ρ(r) =
∑

i z
∗
i δ(r −Ri), the

effective hamiltonian (28) becomes

Hb =
∑
α

p2
α/2m−

∑
iα

· z∗i
|Ri − rα|

+
1

2

∑
α 6=β

1

|rα − rβ|
+

(32)

+
1

2

∑
i6=j

z∗i z
∗
j

|r′ − r|
,

which has been employed in Refs.6 and 7 for the metallic bond.

The mixed terms may be preserved, in general, in the ionic charge density (27), in contrast to the
simplified expression (29); in that case, the ionic cores density of positive charge reads

ρ =
∑
ia;jb

αia;jbχ
∗
iaχjb , (33)

where
αia;jb =

∑
s

β2
sc

s∗
iac

s
jb ; (34)

hence, the charge of electronic ”holes” on each atomic orbital is

z∗ia = αia;ia =
∑
s

β2
s |csia|

2 , (35)

according to the orthogonality of the atomic-like orbitals χia; these charges are not point-like
charges in general, but their pair-like distribution is given by (33). The bond-like hamiltonian



8 J. Theor. Phys.

(28) leads to a quasi-classical description of a slightly inhomogeneous electron liquid, where atomic-
like contribution is usually neglected and the bond-like orbitals Φs are (quasi-) plane waves in the
first approximation; under these circumstances the minimum value of the energy is realized by an
unrestricted occupancy of these orbitals (i.e. β2

s = 1 in the quasi-classical conterpart of the energy
functonal E1), while the conservation of the total charge is ensured by the Coulomb interactions
in (28); indeed, the total charge of the ionic cores described by the density ρ given by (27) is
equal to the total charge of the bond-like electrons, as expected. Such a treatment is appropriate
for the cohesion, the equilibrium structure and the binding energy of the atomic aggregate, as
described within the quasi-classical theory and the linearized Thomas-Fermi model; however, the
occupancy factor must be explicitly employed for the single-electron properties, as, for instance,
in computing the ionization potential, or the plasmon frequency of such atomic aggregates; one
may say that the bond-like electrons are ”strongly renormalized” (fractional occupancy β2

s ) by
their interaction with the ionic cores.[6],[7]

The atomic fractional occupancy α2
s can be made explicit by recasting the energy functional E2

given by (25) or (26) as

E2 =
∑
s

α2
s(t

a
s − na

s) +
1

2

∑
ss′
α2

sα
2
s′(d

a
ss′ − ea

ss′) +

+
1

2

∑
i6=j

ZiZj/ |Ri −Rj| −

(36)

−
∑
ss′
β2

sβ
2
s′Dss′ −

1

2

∑
ss′
β2

sβ
2
s′(d

a
ss′ − ea

ss′) +

+
∑
s

β2
s (ε

a
s(HF )− tbs) ;

up to higher-order contributions in β2
s the last term in (36) is the second-order change −∑

s δµsδns

in the energy, where δµs ' εa
s(HF ) − tbs is the change in the chemical potential and δns = −β2

s

is the variation of the occupation number; one may also note that the energy of the bond-like
electrons as obtained from the quasi-classsical treatment of the hamiltonian Hb, is of higher-order
in β2

s , so that both the last term in (26) and the last term in (36) bring quartic contributions in
β2

s , at least.

In principle, the coefficients csia may be determined from the purely atomic-like problem described
by the energy functional E2 given by (26), according to the standard practice of the ab-initio
wavefunctions methods;[2] these methods provide also the atomic-type ingredients for the quanti-
ties entering the basic system of equations (19); the remaining bond-like matrix elements in (19)
are given by the quasi-classical description of the bond-like electrons moving in the self-consistent
potential determined by the charge distribution ρ given by (27).[6],[7] In the next step, one solves
the system of equations (19) for the parameters β2

s , and looks for a self-consistent solution for
the charge density ρ (and implicitly for the parameters β2

s ). It is worth noting here that the self-
consistency of this computation scheme must also satisfy the equilibrium of the atomic aggregate,
i.e. it must be realized for the minimum value of the total energy functional E with respect to the
positions of the atomic nuclei. According to this prescription the entire problem of the chemical
bond as formulated here may, in principle, be solved completely. It is worth adding in this con-
text that the quasi-classical description and the linearized Thomas-Fermi theory for the slightly
inhomogeneous electron liquid formed by the bond-like electrons, as described by the effective
hamiltonian Hb given by (28), lead to bound states for the atomic aggregates.[6],[7] In this scheme



J. Theor. Phys. 9

of computation the atomic-like part in the energy functional E2 given by (26) may acquire higher
values than its equilibrium value corresponding to the absence of the bond-like electrons (β2

s = 0),
as a consequence of the inter-nuclei Coulomb repulsion; the excess is, in fact, related to the condi-
tion for non-trivial solutions of equations (19), and to the existence of equilibrium, non-vanishing
β2

s -values, and, thus, to the bond-like electron dynamics; in this connection, one may also note
that the last term in (26) lowers the energy E2, in contrast to the excess of its purely atomic-like
part; both the excess of the purely atomic-like contribution to E2 and the last (β2

s -dependent)
term in E2 acquire small values (due to the presence of the β2

s -factors) in comparison with the
purely atomic-like contribution corresponding to β2

s = 0; the total change in E2 for β2
s 6= 0 is

toward small negative values in comparison with the energy of the independent atoms, so that the
binding energy of the atomic aggregate is given both by this small change in the purely atomic-like
energy of the ensemble and by the energy of the bond-like electrons described by the hamiltonian
Hb. However, to the first approximation, both the change in the atomic-like energy E2 and the
departure from unity of the fractional occupancy β2

s < 1 in the bond-like energy functional E1 are
quantum corrections within the scheme of the quasi-classical description; therefore, the binding
energy of the atomic aggregate, and the chemical bond, are given, to the first approximation,
solely by the hamiltonian Hb with a (formal) occupancy β2

s = 1.

According to the above discussion, the chemical bond is realized by electrons in the upper atomic
shells contributing to the bond-like orbitals and generating the effective hamiltonian Hb given by
(28); the latter, by an appropriate treatment,[6],[7] ensures the equilibrium and the stability of the
atomic aggregate for certain values of the inter-nuclei distances. However, pushing the atoms closer
to one another, the upper atomic shells may start to lose their identity as atomic-like orbitals,
expand the width of the bands they form, while the inner shells start to be affected and develop
their own energy bands; very likely, during such a process, the total electronic energy changes little,
but the Coulomb repulsion between the nuclei (not included in the electronic part of the energy)
increases, and opposes itself the atoms getting closer. However, passing over such a ”potential
barrier”, and pushing the atoms close enough to one another by an external force, the energy
bands formed by the inner atomic shells may contribute themselves to the bond-like orbitals, and
there will be more solutions to equations (19), corresponding to more s-states participating in
the chemical bond; the inner atomic shells may therefore contribute non-spontaneously to the
chemical bond, through such an external force pushing the atoms closer and closer to one another;
increasing the number of solutions to equations (19) results, however, in lowering the total energy,
as a consequence of the action of the bond-like hamiltonian Hb (this action may simply be viewed
as an increase in the effective charges z∗i ); then, one may expect another region of stability for
the atomic aggregate, where the atoms are packed closer; going further on, a whole sequence of
(meta-) stability regions can be obtained for atomic aggregates, characterized by tighter bonds
and a closer packing, separated by high energy barriers; such regions (”islands” of meta-stability)
are related to the inner atomic shells.
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