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Abstract

The quasi-classical theory of the slightly inhomogeneous electron liquid is briefly reviewed,
for the chemical bond of atomic aggregates like metallic clusters or solids.

1 Introduction: Chemical Bond

A collection of N atoms with atomic numbers Zi, i = 1, 2, ...N , may bind together through the
Coulomb forces acting between the atomic nuclei and the electrons. The quantal states of such
an ensemble are related to the quantal states of the individual atoms. The usual chemical bond is
realized by the participation of zi valence electrons in the upper atomic shells, distributed among
various atomic orbitals; part of these electrons do effectively participate in the chemical bond, the
remaining being left in the original atomic orbitals. The effective valence z∗i is only a fraction α
of the nominal chemical valence, z∗i = αzi. The chemical bond is thereby described by a set of
z0 =

∑
i z

∗
i electrons moving in a background of ionic cores with charge distributions ρi(R), such

that ∫
dR · ρi(R) = z∗i ; (1)

the ionic charge distributions ρi(R) are given by the particle density of the atomic orbitals in the
valence shell with ”charge” parameters αia,

ρi(R) =
∑
a

αia |ψia(R)|2 , (2)

where a denotes the valence atomic orbitals ψia(R), and
∑

a αia = z∗i = αzi. The ”charge”
parameters αia and the effective valence z∗i remain undetermined, in principle, within the present
theory; they could be obtained by including the dynamics of the electrons left in the valence atomic
shells, and they are mainly determined by the overlap and the matrix elements of the hamiltonian
between the atomic orbitals and the chemical-bond orbitals; this overlap and the corresponding
matrix elements are neglected here, their effects being transferred upon the parameters αia and
z∗i .

The hamiltonian which describes the chemical bond is therefore given by

H =
∑
α

p2
α/2m− e2

∑
iα

∫
dR · ρi(R)

|R− rα|
+
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+
1

2
e2
∑
α 6=β

1

|rα − rβ|
+ (3)

+
1

2
e2
∑
i6=j

∫
dRdR′ · ρi(R)ρj(R

′)

|R−R′|
,

where one may recognize, with usual notations, the kinetic energy of the electrons, the Coulomb
atraction between the electrons and the ionic cores, the Coulomb repulsion between the electrons
and, respectively, the Coulomb repulsion between the ionic cores; the ionic charge distributions
are localized around the ionic cores placed at positions Ri.

2 Hartree-Fock Equations

The quantal states of a large number of electrons may be described in terms of single-particle
states; such states lead to a Fermi sea, to quasi-particles, and to a normal Fermi liquid. The
Hartree-Fock energy functional for the Hamiltonian (3) reads

E =
∑
α

∫
dr · ψ∗

α(p2/2m)ψα − e2
∑
iα

∫
dr
∫
dR · ρi(R)

|R− r|
ψ∗

αψα +

+
1

2
e2
∑
αβ

∫
drdr′ · 1

|r− r′|
ψ∗

α(r)ψα(r)ψ∗
β(r′)ψβ(r′)−

(4)

−1

2
e2
∑
αβ

∫
drdr′ · 1

|r− r′|
ψ∗

α(r)ψβ(r)ψ∗
β(r′)ψα(r′) +

+
1

2
e2
∑
i6=j

∫
dRdR′ · ρi(R)ρj(R

′)

|R−R′|
,

where the usual Hartree and exchange (Fock, Dirac) contributions to the electron Coulomb repul-
sion can be seen. It is convenient to introduce the Hartree self-consistent field

ϕ = e
∑

i

∫
dR · ρi(R)

|R− r|
− e

∫
dr′ · 1

|r− r′|
n(r′) , (5)

where

n(r) =
∑
α

ψ∗
α(r)ψα(r) (6)

is the electron density; the Hartree field satisfies Poisson’s equation

∆ϕ = −4πe
∑

i

ρi(r) + 4πen(r) ; (7)

on the other hand the Hartree-Fock energy functional can be expressed by means of the Hartree
field ϕ, as

E = Ekin + Epot + Eex , (8)

where

Ekin =
∑
α

∫
dr · ψ∗

α(p2/2m)ψα (9)
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is the kinetic energy,

Epot = −1

2
e
∫
dr · (ϕ+ ϕc)n+

1

2
e

′∑
i

∫
dR · ϕcρi (10)

is the potential energy,

ϕc = e
∑

i

∫
dR · ρi(R)

|R− r|
(11)

is the field of the ionic charges, and

Eex = −1

2
e2
∑
αβ

∫
drdr′ · 1

|r− r′|
ψ∗

α(r)ψβ(r)ψ∗
β(r′)ψα(r′) (12)

is the exchange energy (with parallel spins); one may note the Koopmans’ factor 1/2 in the energy
functional and the exclusion of the ionic self-energy; it is also worth noting that the self-consistent
field ϕ given by (5) is the sum of the field ϕc of the ionic charges and the Coulomb repulsion field
of the electrons.

The energy functional (4) leads also to the Hartree-Fock equations

(p2/2m)ψα − eϕψα−

−e2∑β

∫
dr′ · 1

|r−r′|ψ
∗
β(r′)ψβ(r) · ψα(r′) = εαψα ,

(13)

where εα denote the energy levels of the Hartree-Fock quasi-particles. The solutions of the (non-
linear and self-consistent) Hartree-Fock equations, together with the Hartree-Fock energy func-
tional, solve, in principle, the cohesion problem of the condensed-matter atomic aggregates, and of
the chemical bond, as formulated herein, within the general framework of the theory of the normal
Fermi liquid for the electron liquid. This solution is provided by the quasi-classical description.[1],2

3 Quasi-Classical Description

For a large number of electrons (N � 1) the small oscillations of the extended electron orbitals
ψα cancel out to a large extent in the electron density (6), so that the electron density varies
slowly in space, except for the neighbourhood of the ionic cores; consequently, the solutions of the
Hartree-Fock equations (13) are plane waves to the first approximation; it is worth noting that
the plane waves are eigenfunctions for the exchange potential in the Hartree-Fock equations. The
electron density reads then

n(r) = k3
F (r)/3π2 , (14)

where kF (r) is the Fermi wavevector, and the energy functional given by (4), or by (8), becomes
a functional of the electron density, except for the exchange energy; indeed, the exchange energy
is a non-local contribution, and its variations with respect to the local changes in the electron
density are vanishing; one may say that the exchange energy exhibits a ”rigidity” with respect to
the changes in the electron density.[3] The variations of the energy functional with respect to the
electron density leads therefore to the vanishing of the (local) chemical potential

h̄2k2
F/2m− eϕ = 0 , (15)
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as for a stable isolated aggregate. Making use of (14) and (15) one may solve the Poisson’s equation
(7) for the self-consistent Hartree field ϕ, hence compute the energy functional (8), and find out
the equilibrium positions Ri of the ions; thereby, the cohesion problem is finally carried through.
This is the quasi-classical description and the Thomas-Fermi scheme. The next-order corrections
to this scheme are given by the quantal states of the electrons in the Hartree field ϕ, according to
the Hartree equations

−(h̄2/2m)∆ψα − eϕψα = εαψα ; (16)

at the same time the exchange energy in the Hartree-Fock equations has also to be corrected
to the first-order of the perturbation theory. It is worth emphasizing that such higher-order
successive iterations of the Thomas-Fermi scheme lead to corrections which may be comparable
to the quasi-particle lifetime, and be, therefore, irrelevant. Such corrections involve a short-length
scale behaviour of the electrons and ions, and, as such, they do not bring essential contributions
to the overall picture. This picture is that of a slightly inhomogeneous electron liquid.[2]

4 Thomas-Fermi Theory

Accordingly, the slow spatial variations require the substitution k2
F → kFkF in (15), where kF

may be viewed as a variational parameter, the whole spatial variation being transferred upon the

new Fermi wavevector kF ; a similar substitution k3
F → k

2

FkF holds for the electron density (14),
and it is worth noting that such substitutions are valid over those space regions where kF and
kF are comparable in magnitude; such substitutions are corrected by the quantal effects of the
Hartree equations, as discussed above, as due to the abrupt spatial variations of the self-consistent
potential and the electron density in the neighbourhood of the ionic cores. A linearized version[1]
is thereby obtained for the Thomas-Fermi scheme, which consists in

kFkF/2− ϕ = 0 , n = k
2

FkF/3π
2 = (q2/4π)ϕ , (17)

according to (14) and (15), where the Thomas-Fermi screening wavevector q has been introduced
through

q2 =
8

3π
kF ; (18)

it will be taken as the variational parameter; the Bohr radius aH = h̄2/mee = 0.53Å is used as
length unit and the atomic unit e2/aH = 27.2eV is also used for energy. Poisson’s equation (7)
reads now

∆ϕ = −4π
∑

i

ρi(r) + q2ϕ , (19)

and its solution provides the self-consistent field ϕ. It is worth noting that the quasi-classical
description and the quasi-classical equilibrium equation (15) are valid for slow spatial variations,
requiring thus the linearized Thomas-Fermi scheme; the usual ”3/2”-Thomas-Fermi model, where
n ∼ ϕ3/2, would be inappropriate for the slightly inhomogeneous electron liquid; the ”3/2”-
Thomas-Fermi model holds in the classical limit of the quantal mechanics, which is often called
the ”quasi-classical approximation”.[2],[4]

In order to estimate the effect of the quantal corrections, as arising from those spatial regions
of abrupt variations, the variational parameter kF given by (18) (associated with the electron
density) may be compared with the average Fermi wavevector

kFav =
1

z0

∫
dr · nkF =

4

3π2z0

∫
dr · ϕ2 ∼ kF =

3π

8
q2 , (20)
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where
z0 =

∑
i

∫
dr · ρi(r) =

∑
i

z∗i (21)

is the total charge; it is worth noting here the electric neutrality of the aggregate, as obtained from
Poisson’s equation (7), for instance; such a comparison can also be made between the variational
parameter q and the average parameter qav, obtained through (18) with kF replaced by kFav.

5 Energy

The linearized Thomas-Fermi theory requires the kinetic energy Ekin = V k5
F/10π2 of an electron

gas enclosed in the volume V , as given by (9), to be replaced by

Ekin =
k

4

F

10π2

∫
dr · kF =

1

5π2
(3π/8)3q6

∫
dr · ϕ ; (22)

similarly, the potential energy (10) becomes

Epot = − 1

8π
q2
∫
dr · (ϕ+ ϕc)ϕ+

1

2

′∑
i

∫
dR · ϕcρi ; (23)

the variations of the parameter q are related, through (17), to variations in the electron density;
because of the ”rigidity” of the exchange energy, such variations imply changes in the quasi-
classical energy

Eq = Ekin + Epot (24)

only; the exchange energy is therefore added to the minimum value of the quasi-classical energy
Eq in order to get the total energy,

E = Eq + Eex ; (25)

the well-known exchange energy Eex = −V k4
F/4π

3 of an electron gas is replaced by

Eex = − k
3

F

4π3

∫
dr · kF = − 9

128π
q4
∫
dr · ϕ (26)

for the slightly inhomogeneous electron liquid, where q is the equilibrium value of the Thomas-
Fermi screening wavevector as obtained by minimizing the quasi-classical energy Eq. One can
see easily from (22) and (23) that the quasi-classical energy may indeed have a minimum value
for a certain screening wavevector q, and the potential energy (23) may also have minima with
respect to changes in the ionic positions; therefore, the atomic aggregates are stable, and the
solid-state cohesion is obtained, within the present theory; this is the ”no-no-binding theorem”;[4]
the minimization of the energies as discussed here gives both the ground-state ofthe aggregate
and its isomers, i.e. locally stable states higher in energy with different ionic positions, i.e. with
different geometric forms.

Since the atomic energy levels of the electron states participating in the chemical bond vansih
within the quasi-classical description the total energy E as given by (25) is in fact the cohesion, or
the binding energy. One can see easily that the virial theorem, which requires Ekin = −(1/2)Epot,
is not satisfied within the present theory; this means that both the kinetic energy and the potential
energy are not accurate, but the total energy is close to the correct one, due to the variational
approach to the linearized Thomas-Fermi theory, as based upon the quasi-classical description.
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Therefore, the practical prescription of the present theory consists in solving the linear Poisson’s
equation (19) for a given distribution of ionic charges, minimizing the quasi-classical energy Eq

given by (24) with respect to q, minimizing the potential energy (23) with respect to the ionic
positions Ri (the two operations are in fact intervertible), adding the exchange energy Eex given
by (26) in order to get the total (cohesion, binding) energy; estimating the effect of the quantal
corrections by comapring the two screening wavevectors according to (20); and correct the results
by solving the Hartree equations (16), exchange corrections included; higher-order iterations of
this scheme may contribute irrelevant amounts of the order of the quasi-electron lifetime.

6 Metallic Clusters

The αia-parametrizaton of the ionic charge distributions ρi(R) given by (2) has the spatial symme-
try of the density of the valence atomic orbitals; for crystalls this parametrization should also be
compatible with the crystal symmetry; in general, the directional dependence of the ionic charge
distributions ρi(R) induces non-central self-consistent potentials ϕ through Poisson’s equation,
and, accordingly, non-central inter-atomic potentials through the potential energy Epot. The di-
rectional effects are more pronounced for the chemical elements with p-valence orbitals, which
give rise to covalent or ionic bonds; metallic ions have usually s, d, and f -valence orbitals, and the
directional effects are less pronounced (except for the crystalline symmetry); one may therefore
approximate such charge distributions of the metallic ions by point-like charges

ρi(R) = z∗i δ(R−Ri) ; (27)

Poisson’s equation (19) is then easily solved[5] by

ϕ =
∑

i

z∗i
|r−Ri|

e−q|r−Ri| , (28)

while the kinetic energy (22) is

Ekin = (27π2/640)z0 = Aq4/4 , (29)

the potential energy (23) is

Epot = −q
4

3∑
i

z∗2i +
∑
i6=j

z∗i z
∗
j

(
1− 2

q |Ri −Rj|

)
e−q|Ri−Rj |

 =

(30)

= −Bq ,

and the exchange energy (26) becomes

Eex = −(9/32)q2z0 = −Cq2 . (31)

It is worth noting the inter-atomic potentials

Φij = −q
2
z∗i z

∗
j

(
1− 2

q |Ri −Rj|

)
e−q|Ri−Rj | (32)

which are repulsive for short distances, attractive for long distances, and have a minimum value
for q |Ri −Rj| = 2.73 ; they are in fact pseudo-potentials, as they are valid for distances close
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to equilibrium; the entire present theory is holds in fact for distances close to the equilibrium
distances.

The minimization of the potential energy (30) with respect to the ionic positions Ri involves the
minimization with respect to the dimensionless variables xi = qRi; consequently, the coefficient
B in the potential energy (30) does not depend on q; the quasi-classical energy (24) is then given
by

Eq = Aq4/4−Bq ; (33)

its minimum value Eq = −(3/4)Bq is obtained for q = (B/A)1/3 (and Ekin = −(1/4)Epot, in con-
trast to the virial theorem); the inter-atomic distances are therefore obtained from q |Ri −Rj| =
|xi − xj|, where xi are the equilibrium values obtained from the minimization of the potential en-
ergy (30). For homo-atomic clusters z∗i = z∗ the geometric forms do not depend on the chemical
species. The abundance of such clusters in their ground-states is given by D = ln(I2

N/IN+1IN−1) ∼
EN+1 + EN−1 − 2EN , where EN = Eq + Eex is the ground-state energy of a cluster of N atoms,
and IN is the Boltzmann statistical weight; the abundance spectrum D has a characteristic
sawtooth behaviour with the cluster size N , exhibiting sharp peaks at certain magic numbers
N = 6, 11, 13, 15, 19, 23, 26, 29, 34, 45, 53, 57, 61, ...; these magic numbers indicate that the corre-
sponding magic clusters are more stable than their neighbours; they correspond to close-packed
spatial structures with high symmetry, and are geometric magic numbers; for a reasonable physical
range 0 < z∗ < 3 the magic numbers are preserved, while the magic peaks diminish in ampli-
tude on increasing N , as the clusters approach the bulk behaviour; geometric magic forms and
magic numbers for homo-atomic metallic clusters are shown in Fig.1 and, respectively, Fig.2. It
is worth noting the thermodynamic behaviour of the energy in the limit of large N , according to
the definition of coefficients A,B, and C in (29)-(31).

The potential energy Epot given by (30) has many local minima, in general, with respect to
the ionic positions; they corresponds to isomers, i.e. locally stable geometric forms, higher in
energy and less symmetric; such isomers are shown in Fig.3. The isomers are excited at higher
temperatures, and, in general, they are produced in experiments; the corresponding abundance
spectrum is then given by the free energy, instead of the ground-state energy, and one may
speak then of statistical magic numbers, which are distinct of the geometric magic numbers.
For the electronic properties of such statistical ensembles slowly-varying potentials obtained by
averaging the self-consistent potential ϕ given by (28) are more appropriate; such potentials
read ϕ = ϕ0 − ϕxx

2 − ϕyy
2 − ϕzz

2..., for instance, where ϕx,y,z are related to the quadrupole
moment of the cluster;[6] for instance, ϕ0 = 4πz∗/a3q2 = (4π/c3)z∗q, as obtained from (28),
where z∗ is the average ionic charge, a is the average inter-ionic distance, and c = aq is the
average equilibrium value of the dimensionless geometric parameter q |Ri −Rj| (one may take,
for instance, c = 2.73); finite-size effects are therefore included in such electronic potentials, like
the quadrupole contributions; the electronic motion in such potentials exhibits electronic shells,
and the completion of these electronic shells lead to electronic magic numbers, which is another,
distinct set of magic numbers, more appropriate for such smooth electronic potentials; for instance,
the magic numbers of a spatial isotropic oscillator are 2, 8, 20, ....

Making use of the average ionic charge z∗ one obtains the equilibrium Thomas-Fermi screen-
ing wavevector q = (B/A)1/3 = 0.77z∗1/3 (the position-dependent part of the potential energy
vanishes, as expected for a slightly inhomogeneous electron liquid), the quasi-classical energy
Eq = −0.43Nz∗7/3 and the exchange energy Eex = −0.17Nz∗5/3, so that the total energy is given
by

E = −0.43Nz∗7/3 − 0.17Nz∗5/3 ; (34)
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for a typical value z∗ = 0.5 one obtains E/N ∼ −4eV, q ∼ 0.6a−1
H , a ∼ c/q ∼ 3.5aH , and ϕ0 ∼ 5eV;

the average value of the screening wavevector as obtained from (20) is qav = 0.9z∗1/3; one can see
that it compares well with the variational value q = 0.77z∗1/3, the deviation of∼ 17% originating in
the quantal corrections; the results are therefore accurate up to cca 17%, the inaccuracy affecting
the short-length scale behaviour of the aggregate.

7 Atoms and Effective Valence

The quasi-classical description applies to heavy atoms too, i.e. to atoms with high atomic numbers
Z (Z � 1);[7] the results are easily derived from (28)-(31) for N = 1; the self-consistent potential
is ϕ = Ze−qr/r, the quasi-classical energy is E = −11.78Z7/3eV (the exchange energy is Eex =
−4.6Z5/3eV), the Thomas-Fermi screening wavevector is q = 0.77Z1/3, and the average screening
wavevector is qav = 0.9Z1/3; the quantal correction to the (Hartree) energy is ∆E = −4.56Z7/3eV,
so that the atomic binding energy is E = −16.34Z7/3eV; it compares well with the empirical
binding energy −16Z7/3eV of the heavy atoms;[4] similar corrections can be done for the exchange
energy, which however are not very relevant, as the exchange energy itself is not. The electrons in
heavy atoms are mainly concentrated in a sphere of ”electronic” radius Re ∼ 1/q ∼ Z−1/3, which
is longer than the radius RB ∼ 1/Z of the first Bohr quantal orbit and shorter than the atomic
radius R ∼ 1 (i.e. one aH), beyond which the quasi-classical description is not valid.

The fraction α of the valence electrons participating in the chemical bond is given by the content
of plane waves in the valence atomic orbitals; according to the atomic screening theory[8] of the
Thomas-Fermi model this fraction may be estimated as the number Nout of outer electrons lying
outside of a sphere of radius R to the total number Z of electrons; since the electron density is
given by n = (q2/4π)ϕ one obtains

α = Nout/Z = (1 + qR)e−qR ; (35)

for an illustrative purpose one may take R = 1 and a mean value q = 0.84Z1/3 of the variational
0.77Z1/3 screening wavevector and the average 0.9Z1/3 screening wavevector; one obtains αNa =
0.44 for sodium (Na, Z = 11, z = 1, z∗ = 0.44), αK = 0.34 for potassium (K, Z = 19, z =
1, z∗ = 0.34), αFe = 0.28 for iron (Fe, Z = 26, z = 2, z∗ = 0.57), αAg = 0.19 for silver (Ag,
Z = 47, z = 1, z∗ = 0.19), αBa = 0.17 for barrium (Ba, Z = 56, z = 2, z∗ = 0.34). It is worth
emphasizing that such estimations are only orientative; they do not apply to light atoms, and they
are inaccurate for very heavy atoms, as the tail of the outer electrons of the latter is too small.
However, such effective valence charges offer a qualitative numerical estimation of the various
physical quantities involved in the cohesion of the atomic aggregates. For instance, numerical
values of the binding energy per atom are given in Fig.4 for Na, Fe and Ba-clusters vs cluster size
N .

The fractional occupancy α of the chemical-bond orbitals implies that the ionization potential of
an atomic aggregate can be written as

I = (1− α)Ia + αIb , (36)

where Ia is the atomic ionization potential and Ib is the highest occupied level of the electron
liquid (chemical potential of the bond orbitals); to the first approximation of the quasi-classical
description Ib is vanishing, and the quantal corrections do not bring an appreciable contribution;
one may say therefore that the ionization potential of the aggregate is given by

I = (1− α)Ia ; (37)
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making use of the occupancy factor computed above one obtains[6] INa = 2.88eV, IK = 2.86eV,
IFe = 5.67eV, IAg = 6.13eV, IBa = 4.32eV, which compare well with the experimental values
3.5eV (Na), 2.8eV (K), 5.5eV (Ag). For hetero-atomic aggregates an average should be taken over
chemical species in (37); similar considerations are also valid for the electron affinity. A similar
estimation is also valid for the magnetic moment, and Hund’s rule; for instance, an amount of
0.57 spin-paired electrons go to the chemical-bond orbitals for Fe, so that 4 + 1.43 electrons are
left in the d6-atomic orbitals; 2 × 0.43 get now paired, so that 4.57 remain unpaired; one may
say that the magnetic moment of Fe-atomic aggregates is 4.57 electron magnetic moments (Bohr
magnetons µB), to this approximation, µFe = 4.57µB.

8 Metals

The crystalline order brings directional effects which change the ionic interacting part of the
potential energy (30); however, the general screening form may be preserved, so that one may
use for the potential energy a general representation as the one given by (30); the ionic positions
are therefore obtained by minimizing the interacting part of the potential energy, and one may
say that the average inter-ionic distance is also given by a ∼ c/q; averaging out such directional
effects one may write

Epot = −3

4
Nz∗2q +

1

2

∑
i6=j

Φ(rij) = −Bq + q
∑
i6=j

F (qrij) (38)

for the potential energy, where rij are the inter-ionic distances; one may also restrict to the nearest
neighbours g, and write ∑

i6=j

F (qrij) = −1

4
gNz∗2f(qa) ; (39)

in (30) f(x) = (1 − 2/x)e−x, but in general, it differs from that expression; the interacting
contribution to the potential energy is, in general, small in comparison with the ”self-energy”
−Bq; its effects reside mainly in determining the ionic positions; for c = 2.73 and q = 0.77z∗1/3,
for instance, the average inter-atomic distances are rather small, in some cases; Madelung sums
and the directional effects act in opposite directions, and the directional effects may prevail to
some extent in such cases, leading to larger inter-atomic distances. Leaving aside the interacting
part in the potential energy one obtains the total energy

E = −3

4
Bq − Cq2 , (40)

and the screening wavevector q = 0.77z∗1/3. It is worth noting that the aggregate looks very much
in this case like a ”Wigner metal”, i.e. a collection of ”quasi-atoms” consisting of electric charges
in equilibrium, with a self-energy, and slightly interacting with each other.[9]

The binding energy (40) of such a metal leads to the expression given by (34); for z∗Fe = 0.57 one
obtains a reasonable binding energy per atom E(Fe)/N ∼ −5eV. The compressibility κ given by
1/κ = −V ∂p/∂V = V ∂2 |E| /∂V 2 can be obtained from (40) by making use of c = aq, as for
equilibrium;[2] one obtains the sound velocity

vs = 1/
√
κMn =

(41)

=
[

1

A
(0.43z∗7/3 + +0.68z∗5/3)

]1/2

· 1.7 · 104m/s ,
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where n is the atom concentration and A is the atomic mass; for Fe (A = 56) one gets vs ∼
1400m/s.

The sound waves do contribute a T 4-energy (and T 3-entropy) for low temperatures T ; the heat
capacity is therefore given by the T 3-Debye law, and there is no need to distinguish between the
heat capacity at constant volume and the heat capacity at constant pressure, as there is also no
need to distinguish between the two compressibilities, at constant temperature and at constant
entropy; in addition, Gruneisen’s law holds, i.e. the ratio of the coefficient of thermal expansion
(1/V )(∂V/∂T )p (at constant pressure) to the specific heat is independent of temperature; similar
considerations are valid at higher temepartures (typically ≥ 10− 100K), where the heat capacity
is constant, according to Dulong-Petit law.

The general form of the quasi-calssical energy

Eq = Aq4/4−Bq + q
∑
i6=j

F (qrij) (42)

may be expanded with respect to the variations δq and δRi around the equilibrium;[2] the δq-
variations are related to the changes in the electron density through q2 = (8/3π)(3π2n)1/3 (accord-
ing to (14) and (18)), while δRi are changes in the ionic positions; the first variation of the energy
vanishes at equilibrum, while the second-order variations give an electron-electron (”renormal-
ized”) interaction (∼ δq2), an ion-ion interaction (∼ δRα

i δR
β
j ), which leads to atomic vibrations

(α, β being cartesian labels of polarization), and an electron-phonon interaction (∼ δqδRα
i ); these

are elementary excitations associated with the density motion (both electronic and atomic), and
vibration spectra of some magic Fe-clusters are shown in Fig.5; they are computed[5] according
to the equations of motion det(ω2Miδij −Dαβ

ij ) = 0, where Mi denotes the atomic mass and the

dynamic matrix Dαβ
ij = ∂2Epot/∂R

α
i ∂R

β
j is given by (30); typical atomic frequencies are ∼ 10meV.

In the limit of long wavelengths the ”bare” sound velocity has typical values of 103m/s; however,
in this limit the electron-ion equilibrium is reached according to the Born-Oppenheimer adiabatic
theorem, and the ”dressed” sound is the one given by (41); it remains. however, in this limit, an
electron-interacting contribution (∼ δq2) which brings a small quadratic correction to the plasmon
spectrum; within the linearized Thomas-Fermi theory this correction is however uncertain, and it
merely indicates the range of validity of the plasmon spectrum; the electron-phonon interaction
”renormalizes” therefore the sound waves, while for atomic vibrations the electron-phonon inter-
action is of the typical form Mz∗2/3

∫
dr ·δRδn, where δR is the atomic displacement and δn is the

change in the electron density, where M ∼ 0.27eV; the electron-phonon interaction vertex brings

only small changes of the order of
√
m/M , both to electrons and to atomic vibrations, where m is

the electron mass and M denotes here the atom mass; it contributes to transport, by restricting
the lifetime of both the phonons and the electrons; and gives also rise to superconducting insta-
bilities; as well as to other electron-ions instabilities, like charge-density waves (Peierls-Frohlich
transition) in anisotropic materials (for instance in quasi-one-dimensional materials).

9 Plasmons

The long-wavelength variations in the electron density leads to a vanishing first-order variation
of the Hartree-Fock energy functional (4), according to the quasi-classical equilibrium equation
(15);[1],[2] the second-order variation gives therefore a potential energy

U =
1

2

∫
drdr′ · e2

|r− r′|
δn(r)δn(r′) ; (43)



J. Theor. Phys. 11

a displacement field u generates the change δn = −ndivu, and a kinetic hamiltonain

T =
1

2

∫
dr · nm •

u
2

; (44)

hence, one gets easily the plasma frequency ω = (4πn2e2/mn)1/2 = (4πne2/m)1/2; actually, the
electron density affected by the long-wavelength motion is ”renormalized” by the occupancy factor
α, so that the substitution n→ αn is needed in the plasma frequency; one obtains therefore

ω =
√
α(4πne2/m)1/2 (45)

for the plasma frequency; the occupancy factor α simulates in fact the reduction of the matrix
elements of the Coulomb potential for atomic orbitals, in comparison with the plane waves; typical
values are ω ∼

√
α(5 − 8)eV; the zero-point energy of the plasmons can be estimated as Epl ∼

ωN(aq)3β3, where β = K/q and K is a long-wavelength cut-off; for finite values of this cutoff the
zero-point plasmon energy brings a small contribution to the cohesion energy (∼ ω/(8 − 10)); it
is worth noting that the inhomogeneities of the electron liquid and the quantal corrections reduce
the plasmon lifetime, and restrict the validity of the plasmon spectrum (45) to the long wavelength
limit.

10 Electronic Properties

The valence atomic orbitals do contribute plane waves to the chemical-bond orbitals, to the first
approximation; the content of plane waves in the valence atomic orbitals are therefore related to
the αia-parameters of the ionic charge distributions; the occupancy of the plane-waves orbitals
depend, in general, on these orbitals, and the effective valence electrons are given by the sum total
of all these orbital occupancies. The quantal corrections, brought about by the electron motion in
the self-consistent field ϕ, modify slightly the plane-waves orbitals, and the corresponding single-
particle energies; they also split the energy levels of the valence atomic orbitals, and this spliting
leads to energy bands for crystalline solids; each band consists of N twofold degenerate orbitals,
each with a fractional occupancy; they may give electric conductors, or insulators, according to the
number of orbitals in the band affected by (fractional) electron filing, along one or another direction
in space; the fractional occupancy of the orbitals, though resembling a ”strong renormalization”
of the electrons caused by their interaction with the ions, and leading to ”strongly renormalized”
Hartree-Fock quasi-particles, does not show itself except in plasma frequency, ionization potentials,
etc, as discussed before. The quasi-particle excitations of the inhomogeneous electron liquid are
not affected practically by such a fractional occupancy.

A quasi-particle excitation of the inhomogeneous electron liquid appears through the Born elastic
scattering of a plane wave on the self-consistent potential ϕ.[2] The f -amplitude of the Landau
theory of the normal liquid is therefore given by

f(k− k′) = 4πe2
∑

i

z∗i
q2 + |k− k′|2

ei(k−k′)Ri , (46)

according to (28) (for parallel spins); one may average out over the ionic positions and get the
forward scattering amplitude

f(p− p′) = f
(2πh̄)3

V
δ(p− p′) , (47)
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where
f = 4πNe2/q2 ; (48)

the typical integrals in the theory of the normal Fermi liquid involves the variation δnp = −δ(ε−
εF )δε of the Fermi distribution at the Fermi surface; in such integrals δ(ε−εF ) = 1/∆ε for forward
sacttering, where ∆ε = (pF/m)(πh̄/a), pF is the Fermi momentum, εF is the Fermi level, and
a is the average inter-atomic distance. The local Fermi surface is given by εF = ϕ, according
to the quasi-classical description, where the Fermi energy is εF = kFkF/2 = (3π/16)q2kF ; the
chemical potential is only a small (quantal) correction, so that it can be neglected; the local
Fermi sea is anisotropic; however, in the limit of validity of the quasi-classical description it may
be approximated by a spherical Fermi sea given by the average ϕ = 4πz∗/a3q2; one obtains
kF = (16/3πq2)ϕ = 64z∗/3a3q4 (and εF = ϕ = 4πz∗/a3q2); the variational screening wavevector
is q ' 0.77z∗1/3, and aq ' 2.73 (in general, aq = c, where c is a constant; for the present
approximation c ' 2.73).

According to the theory of the normal Fermi liquid one obtains an effective mass

m∗ = m(1 + 0.39z∗1/3) (49)

for electrons, which leads to an electronic specific heat C = V ρ∗π2T/3, where ρ∗ = pFm
∗/π2h̄3

is the renormalized density of states at the Fermi surface (as it is well-known there is no need to
distinguish between the two electronic heat capacities, or compressibilities; and the Gruneisen’s
law holds for electrons); the electronic compressibility (or the thermal expansion coefficient) is not
seen experimentally, as the electrons are not decoupled from ions; similarly, the electronic sound

velocity ue = v0
F

√
α/3, where v0

F is the bare Fermi velocity ( v0
F ' 3z∗2/3 · 106m/s) and α is the

orbital occupancy, is immersed in the continuum of electron-hole excitations, and the ”electronic
sound” does not exist at low temperatures (Landau’s damping); the zero-sound also reduces itself
to the electron-hole excitations, due to the forward charcater of the scattering amplitude, and
therefore it does not exist either; however, the kinetic equation requires the scattering amplitude
at finite momenta, which, in general, differs from f -above at finite energies (the two limits are
not intervertible in general), and this leads to plasmons as colletive excitations; the quasi-particle
(quasi-hole) lifetime τ is given by

γ = 1/τ =
π

2h̄
(4πe2Nz∗/V q2)2(ρ/n)3 (ε− εF )2 + π2T 2

exp(∓(ε− εF )/T ) + 1
, (50)

where the upper (lower) sign corresponds to quasi-particles (quasi-holes), ρ is the (bare) density
of states at the Fermi surface and n is the average electron concentration; finally, the Pauli spin
paramagnetic susceptibility is not renormalized, due to two equal and opposite changes in the
density of states and the gyro-magnetic factor; it is given by the free susceptibility χ = (1/4)g2µ2

Bρ,
where g (' 2) is the electronic gyro-magnetic factor and µB (= eh̄/2mc) is the Bohr magneton (the
Zeeman energy µBH ' 0.67K for a magnetic fieldH = 1Ts= 104Gs; 1eV' 11.6·103K' 1.6·10−19J;
m ' 9 · 10−31Kg; h̄ ' 10−34Js).

11 Polarizability and Diamagnetic Susceptibility

An external electric field E produces an additional potential −Er, and a change δn in the equilib-
rium electron density; since

∫
δn = 0, the kinetic energy (22) does not change, while the potential

energy (23) gives

−4π

q2
nδn− 1

2
ϕcδn+ Ern = 0 , (51)
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and

δn =
q2

4π

ϕ

ϕ+ ϕc/2
Er ; (52)

the net change in energy is therefore

δE = − q2

4π

∫
dr

(
ϕ

ϕ+ ϕc/2

)2

(Er)2 ; (53)

hence one can get the electric polarizability.[1],[2] For a uniforrmly distributed nuclear charge Nz∗

in a sphere of radius R, one may use ϕ = 4πz∗/q2a3 and ϕc = 2πz∗R2/a3, where a is the average
inter-ionic distance; the change in energy is δE = −[16/15(aq)2]a2R |E|2, and the polarizability
χe = [32/15(aq)2] a2R; as expected it vanishes for large R.

The electrons in a uniform magnetic field H have a diamagnetic energy

δE = − e2

8mc2
∑
α

(H× rα)2 , (54)

where c is the light velocity; hence,

δE = − e2H2

12mc2
∑
α

r2
α = − e2H2

12mc2

∫
dr · r2n , (55)

and, with a uniform distribution of nuclear charges, one obtains[1],[2] δE =
= −(πe2/15mc2)(z∗R5/a3) |H|2; the diamagnetic susceptibility is therefore χd = −(2πe2/15mc2)(z∗R5/a3) '
−0.54 · 10−4 · (2π/15)(z∗R5/a3)aH .

12 Concluding Remarks

Wavefunctions methods[10] for the chemical bond of large atomic aggregates start with atomic-like
orbitals

ϕs =
∑
ia

csiaχa(r−Ri) , (56)

which are superpositions of individual atomic-like orbitals χa(r−Ri) localized at the positions Ri

of the atomic nuclei, and attempt to minimize the Hartree-Fock energy functional

Ea =
∑
s

(tas − na
s) +

1

2

∑
ss′

(da
ss′ − ea

ss′) +

(57)

+
1

2

∑
i6=j

ZiZj/ |Ri −Rj| ,

where the matrix elements are the kinetic energy

tas =
∫
drϕ∗

s(p
2/2)ϕs , (58)

the electron-nuclei attraction

na
s =

∫
dr
∑

i

(Zi/ |Ri − r|)ϕ∗
sϕs , (59)
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and the direct
da

ss′ =
∫
drdr′(1/ |r− r′|)ϕ∗

sϕs · ϕ∗
s′ϕs′ (60)

and exchange

ea
ss′ =

∫
drdr′(1/ |r− r′|)ϕ∗

s(r)ϕs(r
′) · ϕ∗

s′(r
′)ϕs′(r) (61)

interactions; atomic units are used, and a denotes usually the valence atomic orbitals.

Beside the atomic-like orbitals (56) the molecular-like orbitals[11] ψs include extended bond-like
orbitals Φs, such that

ψs = αsϕs + βsΦs , α2
s + β2

s = 1 , (62)

as for orthonormal sets of wavefunctions; the density-functionals methods[12] for the chemical
bond touch upon this point, especially in connection with the Thomas-Fermi model.[13]

The great disparity between the scale-lengths of the localized atomic-like orbitals ϕs and the
extended bond-like orbitals Φs provides a certain decoupling of the atomic degrees of freedom from
the chemical bond degrees of freedom, up to a density-density interaction originating in the direct
Coulomb repulsion; the minimization of the Hartree-Foch energy functional for the molecular-like
orbitals ψs with respect to the βs-parameters leads to the linear system of equations[14]

−As +
∑
s′
Dss′β

2
s′ = 0 , (63)

where

As = εa
s(HF )− εb

s(HF ) +
∑
s′

(db
ss′ − eb

ss′ −
1

2
dab

ss′) , (64)

and the matrix Dss′ is given by

Dss′ = (da
ss′ − ea

ss′) + (db
ss′ − eb

ss′)− dab
ss′ ; (65)

the b-labelled matrix elements are defined similarly with the atomic-like matrix elements above
given by (58)-(61) by using the bond-like orbitals Φs instead of the atomic-like orbitals ϕs; and
the Hartree-Fock energies are given by

εa,b
s (HF ) = ta,b

s − na,b
s +

∑
s′
da,b

ss′ −
∑
s′
ea,b

ss′ . (66)

Very likely, the matrix Dss′ is positive definite, so that As must acquire positive values in order
to have solutions to (63); the atomic-like orbitals in the upper valence atomic shells may provide
such solutions, leading thus to the chemical bond as described by molecular-like orbitals.

Beside the atomic-like energy functional Ea given by (57) one obtains now an additional bond-like
energy functional

Eb =
∑
s

β2
s t

b
s −

1

2

∑
ss′
β2

sβ
2
s′d

ab
ss′ +

1

2

∑
ss′
β2

sβ
2
s′d

b
ss′ −

(67)

−1

2

∑
ss′
β2

sβ
2
s′e

b
ss′ +

1

2

∑
ss′
β2

sβ
2
s′(d

a
ss′ − ea

ss′) ,

and an energy
∆E = −

∑
s

β2
s (As + tbs) ; (68)
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the bond-like energy functional Eb indicates the fractional occupancy β2
s of the bond-like orbitals,

and the hamiltonian

Hb =
∑
α

p2
α/2m−

∑
α

∫
dr′ · ρ(r′)

|r′ − rα|
+

1

2

∑
α 6=β

1

|rα − rβ|
+

(69)

+
1

2

∫
drdr′ · ρ(r)ρ(r

′)

|r′ − r|

for the bond-like electrons, where

ρ =
∑
s

β2
sϕ

∗
sϕs =

∑
ia;jb

αia;jbχ
∗
iaχjb =

(70)

=
∑
ia;jb

(
∑
s

β2
sc

s∗
iac

s
jb)χ

∗
iaχjb

is the density of positive charge left behind in the atomic-like orbitals by the electrons participating
in the chemical bond; the hamiltonian (69) describes the interaction between these electrons and
their electronic ”holes” in the ionic cores. One can see that Hb given by (69) is in fact the effective
hamiltonian given by (3), and the pair-wise distribution ρ given by (70) corresponds to the effective
charges

z∗ia = αia;ia =
∑
s

β2
s |csia|

2 (71)

and z∗i =
∑

a z
∗
ia; and an average occupancy β2

s equals z∗ia; neglecting the cross-terms in (70)
the density of the ionic cores becomes ρ =

∑
ia αia;ia |χia|2 like in (2); or, for point-like charges,

ρ =
∑

ia z
∗
iaδ (r−Ri) =

∑
i z

∗
i δ (r−Ri), like in (27).

The atomic-like problem as formulated by the energy functional Ea given by (57) can be solved, in
principle, according to the usual practice of the wavefunctions methods;[10] the bond-like hamil-
tonian Hb given by (69) can be treated by the quasi-classical theory of the slightly inhomogeneous
electron liquid; the self-consistent solution to equations (63) is then obtained for the parameters β2

s

and, implicitly, for the density ρ of the effective charge of the ionic cores; the actual self-consistent
solution must also ensure the minimum value of the total energy functional Ea + Eb + ∆E with
respect to the positions of the atomic nuclei. The chemical bond consists therefore of extended
bond-like electronic orbitals of fractional occupancy β2

s and of localized atomic-like electronic or-
bitals of fractional occupancy α2

s (the atomic-like fractional occupancy may be made to appear
explicitly in the atomic-like energy functional Ea); the total electronic energy ensures the equilib-
rium of the atomic aggregate with respect to the Coulomb repulsion between the atomic nuclei.
The contribution of the atomic-like part of the total energy to the binding energy is a quantal cor-
rection with respect to the quasi-classical description, so that, to the first approximation it may be
neglected; the unrestricted minimization of the bond-like energy functional requires then a unity
occupancy β2

s = 1 for the bond-like orbitals, the conservation of the total charge being ensured
by the Coulomb interactions in the hamiltonian Hb given by (69); within this approximation, one
may say, therefore, that the binding energy and the cohesion of the atomic aggregates are given
by the theory of the slightly inhomogeneous electron liquid for the bond-like hamiltonian Hb given
by (69); however, while this procedure is satisfactory for the binding energy and the cohesion, the
fractional occupancy must be included for the single-electron properties.

Figure Caption
Fig.1 Magic homo-atomic metallic clusters
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Fig.2 Ground-state mass-abundance spectrum and geometric magic numbers
Fig.3 Isomers for Fe-clusters (z∗ = 0.57)
Fig.4 Ground-state energy per atom E(N)/N for Na-clusters (z∗ = 0.44), Fe-clusters (z∗ =

0.57) and Ba-clusters (z∗ = 0.34) plotted vs cluster size N
Fig.5 Vibration spectra for some Fe-magic clusters (z∗ = 0.57)

References

[1] M. Apostol, J. Theor. Phys. 41 1 (1999).

[2] M. Apostol, Electron Liquid, apoma, Magurele-Bucharest (2000).

[3] This ”rigidity” of the exchange energy has probably been touched upon for the first time
by E. Wigner and F. Seitz, Phys. Rev. 43 804 (1934); 46 509 (1934), and J. C. Slater, The
Calculation of Molecular Orbitals, Wiley, NY (1979).

[4] See, for instance, the clarifications brought by J. M. C. Scott, Phil. Mag.43 859 (1952),
and by J. Schwinger, Phys. Rev. A22 1827 (1980) and A24 2353 (1981), to the asymptotic
series of the atomic binding energy provided by the ”3/2”-Thomas-Fermi model in the limit
Z →∞; as well as the ”no-binding theorem” of the latter in E. Teller, Revs. Mod. Phys. 34
627 (1962), E. Lieb and B. Simon, Adv. Math. 23 22 (1977), L. Spruch, Revs. Mod. Phys.63
151 (1991).

[5] L. C. Cune and M. Apostol, J. Theor. Phys. 49 1 (2000); 50 1 (2000).

[6] L. C. Cune and M. Apostol, J. Theor. Phys. 53 1 (2000).

[7] L. C. Cune and M. Apostol, J. Theor. Phys. 45 1 (1999); 54 1 (2000).

[8] J. C. Slater, Quantum Theory of Atomic Structure, McGraw-Hill, NY (1960).

[9] See, for instance, E. Wigner and F. Seitz, loc cit, Ref.3, and E. Wigner, Phys. Rev. 46 1002
(1934); Trans. Faraday Soc. 34 678 (1938); such qualitative considerations apply in fact to a
universal model of solid, as based upon a screened Coulomb interaction.

[10] See, for instance, J. A. Pople, Revs. Mod. Phys. 71 1267 (1998).

[11] R. S. Mullikan, Phys. Rev. 32 186 (1928).

[12] P. Hohenberg and W. Kohn, Phys. Rev. 136 B864 (1964); W. Kohn and L. J. Sham, Phys.
Rev. 140 A1133 (1965); see also W. Kohn, Revs. Mod. Phys. 71 1253 (1998).

[13] See, for instance, the Thomas-Fermi model in the quasi-classical limit in Ref.4.

[14] M. Apostol, J. Theor. Phys. 55 1 (2000).



J. Theor. Phys. 17

c© J. Theor. Phys. 2000, apoma@theor1.theory.nipne.ro



18 J. Theor. Phys.

� ��� ���

��� ��� �	�

��� 
�� ��

��� �	� ���

���

Figure 1: Magic homo-atomic metallic clusters
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Figure 2: Ground-state mass-abundance spectrum and geometric magic numbers
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Figure 3: Isomers for Fe-clusters (z∗ = 0.57)
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Figure 5: Vibration spectra for some Fe-magic clusters (z∗ = 0.57)


